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Introduction

A collection of microbial taxa in a given environment is

defined as microbiota [1]. There has been numerous

studies reporting changes of the human microbiome

linked to various chronic diseases including periodontitis

[2], obesity [3], inflammatory bowel disease [4], cancer

[5] and Alzheimer’s disease [6]. Many parameters have

been reported to influence microbiota composition, rang-

ing from host genotype [7], nutrition [8], inflammation

[9], antibiotic usage [10] and other unknown factors such

as medication, geological area and host age. Thus,

upscaling microbiome studies are required to disentangle

the multiple, confounding effects of various factors in the

microbiome.

The human oral cavity has been a model for advanced

microbiome analysis to gain an understanding of micro-

bial ecology [11]. A wide variety of bacterial types have

been reported with more than 700 species present in the

oral cavity with distinctive pattern of microbial species

on both hard and soft tissue oral surfaces [12]. Although

a significant portion (≈30%) of oral microbial species

remains uncultivable (http://www.homd.org), oral micro-

biome is well characterized compared to other microbi-

ome research areas. In diseases such as periodontitis or

peri-implantitis, alteration of microbiome in subgingival

plaques are also noted [13, 14]. Oral samples can be col-

Next generation sequencing is commonly used to characterize the microbiome structure. MiSeq is com-

monly used to analyze the microbiome due to its relatively long read length. However, recently, Illumina

introduced the 250x2 chip for HiSeq 2500. The purpose of this study was to compare the performance of

MiSeq and HiSeq in the context of oral microbiome samples. The MiSeq Reagent Kit V3 and the HiSeq

Rapid SBS Kit V2 were used for MiSeq and HiSeq 2500 analyses, respectively. Total read count, read quality

score, relative bacterial abundance, community diversity, and relative abundance correlation were ana-

lyzed. HiSeq produced significantly more read sequences and assigned taxa compared to MiSeq. Con-

versely, community diversity was similar in the context of MiSeq and HiSeq. However, depending on the

relative abundance, the correlation between the two platforms differed. The correlation between HiSeq

and MiSeq sequencing data for highly abundant taxa (> 2%), low abundant taxa (2−0.2%), and rare taxa

(0.2% >) was 0.994, 0.860, and 0.416, respectively. Therefore, HiSeq 2500 may also be compatible for microbi-

ome studies. Importantly, the HiSeq platform may allow a high-resolution massive parallel sequencing for

the detection of rare taxa. 
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lected repetitively, easily, and in most cases noninva-

sively. Thus, oral cavity is very interesting site for

microbiome study. 

Research into microbial ecology has expanded enor-

mously due to advances in DNA sequencing, which now

enables researchers to probe microbial community com-

position and function in a high-resolution and culture-

independent manner. For microbiome study, there are

several DNA sequencing platforms, including 454

pyrosequencing [15], MiSeq and HiSeq from Illumina

[16], Ion Torrent [17], and so on. Especially, interest in

16S rRNA gene amplicon sequencing on Illumina is

growing, largely due to lower cost per sequence and

lower sequencing error rate than other platforms,

enabling high throughput microbial ecology at the great-

est coverage [18]. HiSeq and MiSeq platforms are among

the most widely used platform to study microbial com-

munities. But the two platforms differ in the length and

amount of reads. MiSeq can run 600 cycles to produce

200 million 300-bp reads, on the other hand, HiSeq 2500

can run 500 cycles to produce 120 million 250 bp.

In this study, we used oral samples from patients with

periodontitis simultaneously sequenced by MiSeq and

HiSeq platforms to determine the similarity and differ-

ence between two platforms. 

Material and Methods

Study population and clinical examination
Plaque samples were obtained from patients with

periodontitis who were scheduled to undergo periodontal

treatment at the Department of Periodontics of Pusan

National Dental School, Yangsan, Korea. The samples

were collected from a total of 8 patients comprising 2

male patients and 6 female patients. The average age of

the patients was 51.4 ± 11.4 years. Buccal, supragingival

and subgingival plaque samples were collected with the

full-mouth periodontal examination. All participants

were requested to refrain from food and oral hygiene

(brushing or flossing the teeth) for 2 h before sampling.

Samples were collected after isolating the selected sam-

pling site with microbrush. Buccal samples were

obtained from the mucosa of both the cheeks. Subgingi-

val and supragingival plaque samples were collected

from the molars of each participant using a sterile

Gracey curette. The experimental protocol was approved

by the Institutional Review Board of Pusan National

University (PNUDH-2017-023). Written informed con-

sent was obtained from all participants before the study.

The plaque samples were stored at -80◦C until analyzed.

Extraction of total genomic DNA
Total DNA was extracted using a Gram positive DNA

purification kit (Lucigen, Biosearch Technology, USA)

following the manufacturer’s instructions. The final con-

centration was measured with a NanoDrop ND-1000

spectrophotometer (Thermo Fisher Scientific, USA) and

stored at -80◦C until use.

PCR amplification and sequencing analysis
Library construction and sequencing were performed

by Macrogen (Korea). Each sequenced sample was

prepared according to the Illumina 16S Metagenomic

Sequencing Library protocols to amplify the V3 and V4

region (314F-806R). The barcoded fusion primer

sequences used for amplifications were as follows: 314F:

5’-CCT ACG GGN GGC WGC AG-3’, 806R: 5’-GAC TAC

HVG GGT ATC TAA TCC-3’. The DNA quality was

measured by PicoGreen and Nanodrop. Input gDNA

(10 ng) was PCR amplified. The final purified product

was then quantified using qPCR according to the qPCR

Quantification Protocol Guide (KAPA Library Quan-

tificatoin kits for Illumina Sequecing platforms) and

qualified using the LabChip GX HT DNA High Sensitivity

Kit (PerkinElmer, USA). Paired-end sequencing was

performed using MiSeq Ragent kit V3 for the MiSeq

(2 × 300 bp) or HiSeq Rapid SBS kit V2 for HiSeq 2500

(2 × 250 bp) (Illumina, USA). Raw sequencing data was

filtered and trimmed by using QIIME package version 2

(Caporaso et al., 2010). Both 8 bases were trimmed from

the start in forward and reverse reads. Same trimming

size was applied to both platforms. Forward and back-

ward reads were joined with join_paired_ends.py com-

mand. Chimeras were identified and filtered using

usearch method (Rognes et al., 2016). Finally, the tool

was used to pick closed-reference OTUs from the

Human oral microbiome database (HOMD) [12]. 

Bioinformatic analysis, statistical analysis, and visualiza-
tion

Alpha diversity was used to describe the microbial

richness, evenness and diversity within samples using
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the Chao1 and Shannon index. Principal coordinate

analysis (PCoA) of the Bray-Curtis distance was per-

formed to determine the change in the community struc-

ture using the vegan package v2.3-0 in R software

v3.2.1. Relative abundance correlation between HiSeq

and MiSeq was determined by Pearson’s correlation.

The taxonomy compositions and abundances of different

samples were visualized by R and GraphPad PRISM

software (version 4.0). 

Data availability
The raw sequencing data have been deposited at

NCBI GenBank under BioProject ID PRJNA649363

(BioSample SAMN15664667 - SAMN15664690). Please

check the data using the below private reviewer link,

https://dataview.ncbi.nlm.nih.gov/object/PRJNA649363?

reviewer=fccf7o3gmp30ceb71p23uf4sp0.

Result

Proportions for good quality read sequences of total read
From HiSeq sequencing, we have obtained a total of

6,689,663 raw reads, corresponding to 175,143 to

403,487 reads per sample (average 278,736 ± 50,716).

The final data set after removing low-quality reads and

checking for chimeras contained 695,643 reads, corre-

sponding to 6,471 to 89,062 reads per sample (average

28,985 ± 22,067). From MiSeq sequencing, we have

obtained a total of 3,937,859 raw reads, corresponding to

126,378 to 238,406 reads per sample (average 164,077 ±

25,697). The final data set after removing low-quality

and chimera reads, number of reads per sample ranged

from 2,877 to 47,380 (average 15,543 ± 11,347) (Table

S1). 

Read sequence quality
To evaluate and control sequencing data quality, a

plot of a random sample was generated using a random

sampling of 10000 out of total input sequences without

replacement. Each forward and reverse plot represents

the parametric seven-number summary of the quality

scores at the corresponding position (Fig. 1). The read

length produced was 301 bases for MiSeq and 251 bases

for HiSeq. The forward reads produced high quality in

both MiSeq and HiSeq sequencing. The reverse reads

showed lower sequencing quality. Sequences average

Fig. 1. Representative figures of read sequence quality comparisons between MiSeq and Hiseq. Forward sequence quality
score from MiSeq (A) and HiSeq (C). Reverse sequence quality score from MiSeq (B) and HiSeq (D).  
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quality score below 30 on a window of 20 bases were con-

sidered for trimming site. To compare between platforms,

same trimming site was applied with optimum trim-

ming size. Both 8 bases were trimmed from the start in

forward and reverse reads. Forward reads were trimmed

at 248 and reverse reads were trimmed at 240 bases. 

Taxonomical assignment and diversity
Each refined sequencing read was taxonomically

assigned by aligning it to sequences in the HOMD data-

base. A total of 8 phyla, 43 genera, and 298 species were

detected. The number of species-level operational taxo-

nomic units (OTUs) observed in the HiSeq and MiSeq

samples were 279 and 245, respectively. The average

number of species in HiSeq and MiSeq samples was

67.42 ± 19.94 and 59.67 ± 17.74, respectively (Table S2).

To compare overall outcome, alpha and beta diversity

was analyzed. In case of alpha diversity, the Chao1 and

Shannon index were similar between MiSeq and HiSeq

samples (Fig. 2A). To define bacterial community pat-

terns between MiSeq and HiSeq samples, beta-diversity

of the corresponding samples were performed. In the

Bray Curtis-based principal coordinates analysis (PCoA),

most of the samples were closely positioned suggesting

that each community share similar composition (Fig. 2B). 

Distribution of species counts depending on relative
abundance

Since there could be difference in taxonomy assign-

ment depending on microbial abundance, assigned taxa

were clustered into three groups; highly abundant taxa

(taxa with more than 2% of each sample), moderately

abundant taxa (taxa between 2% and 0.2%) and rare

taxa (taxa with less than 0.2% of each sample). When

cumulative abundance was calculated, highly abundant

taxa consisted 79.2% of the total population while mod-

erately abundant taxa consisted 18.7% and rare taxa

consisted only 2.0% of total population in both HiSeq

and MiSeq platforms (Fig. 3A). Total taxa count of

highly abundant taxa was 244 and all the taxa were

assigned in both platforms. In moderately abundant

taxa, total taxa count was 622 and 38 taxa was only

assigned in HiSeq analysis. In rare taxa, total taxa count

was 944 and 413 taxa was assigned by both platforms

(43.7%). Interestingly, 192 taxa was uniquely assigned

by MiSeq while 340 taxa was assigned by HiSeq analy-

sis (Figs. 3B and 3C). Taken together, in highly abun-

dant taxa, all the assigned taxa showed similar

assignment while in rare taxa, there were many taxa

that was only assigned by either HiSeq or MiSeq. 

Species abundance comparison depending on relative
abundance

To evaluate the abundance ratio correlation between

MiSeq and HiSeq, scatter plot and bar chart was plotted

at the species level depending on their relative abun-

dance. In highly abundant taxa, correlation coefficient

was 0.994 (p < 0.001) suggesting high correlation

Fig. 2. Bacterial community diversity comparison between MiSeq and HiSeq. (A) Alpha diversity. Alpha diversity was used to
describe the microbial richness, evenness and diversity within samples using the Chao1 and Shannon index. (B) Beta diversity of
each sample connected with line. Principal coordinate analysis (PCoA) of the Bray-Curtis distance was performed to determine the
microbial community structure.  
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between HiSeq and MiSeq plat form (Fig. 4A). Also,

when 20 top most abundant species were plotted, the

relative abundance also showed similar abundance (Fig.

4B). In consistent with distribution overview, when cor-

relation among taxa with low relative abundance were

plotted, correlation coefficient was lower as the abun-

dance decreased (0.860 and 0.416 for moderate and low

abundant taxa, respectively) (Figs. 5A and 5C). How-

ever, when unmatched taxa were removed, correlation

coefficient was over 0.6 which suggest there was high

correlation between the platforms in the matched taxa

(Figs. 5B and 5D). Taken together, in abundant taxa,

there was no difference in their relative abundance

between platforms while in low abundant taxa, the cor-

Fig. 3. Overview of species count distribution depending on relative abundance. (A) Proportion of read count included in each
group. (B) Number of species counts with matched species samples or with unmatched ones. (C) Number of unmatched species
counts in HiSeq and MiSeq.  

Fig. 4. Correlation between HiSeq and MiSeq in highly abundant species. (A) Correlation plot of species abundance more than
2%. (B) Comparison of top 20 abundant species between MiSeq and HiSeq in each sample. 
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relation was not as high as the abundant taxa. 

Discussion

There have been numerous studies reporting changes

of the human microbiome linked to various human dis-

eases [11, 19]. For microbiome study, MiSeq and HiSeq

from Illumina are among the most widely used to study

microbial community. The HiSeq and MiSeq platforms

differ markedly in scale. In this study, we compared the

oral microbiome in periodontitis patients using MiSeq

and HiSeq platform to determine their suitability for

large-scale surveys of oral microbial communities. 

Since the number of samples loaded in each platform

was not equal in every experiment, direct comparison for

read count between HiSeq and MiSeq may not be appro-

priate. However, practical read count was compared as a

prospective to overview the outcomes of each platform.

In practice, number of samples recommended to be

loaded for HiSeq and MiSeq is around 90 and 380. Con-

sidering that the HiSeq2500 produces 62 Gb produces

120 million 250-base paired-end reads and the MiSeq

generates 12 Gb from 20 million 300-base paired-end

reads, the theoretical average read count from each run

for a sample is around 300,000 and 200,000 reads for

HiSeq and MiSeq, respectively. In this study, we loaded

around 260 and 80 samples for HiSeq and MiSeq analy-

sis, respectively. After quality filter, the overall read pro-

Fig. 5. Correlation between HiSeq and MiSeq in low abundant to rare species. (A) Total correlation plot of species abundance
between 2% and 0.2%. (B) Correlation plot of species abundance between 2% and 0.2% after removing unmatched samples. (C)
Total correlation plot of species abundance less than 0.2%. (D) Correlation plot of species abundance less than 0.2% after removing
unmatched samples. 
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duced by HiSeq and MiSeq was 278,736 ± 50,716 and

164,077 ± 25,697, respectively. Thus, HiSeq was loaded

with much more samples simultaneously and produced

significantly more read counts compared to MiSeq. 

To evaluate and control sequencing data quality, a

plot of a random sample was generated. Each forward

and reverse plot represents the parametric seven-num-

ber summary of the quality scores at the corresponding

position. A quality score is determined from the proba-

bility that a given sequenced base is wrong. QIIME uses

the Phred score and user-defined parameters to remove

sequence reads that do not meet the desired quality [20].

The forward reads produced high quality in both MiSeq

and HiSeq sequencing. However, the reverse reads

showed relatively lower sequencing quality at the distal

end. The presence of low-quality bases towards the right

end of the sequence adversely affects the joining step,

leading to the failure of the joining, and consecutively to

the loss of the reads in the middle of the analysis [21]. To

reduce the consequences of this problem, it is recom-

mended to trim the reads distal to a point where phred

quality score drops below a specific threshold (quality

trimming) [22]. With a majority of high-quality,

sequences average quality score below 30 on a window of

20 bases were considered optimum for trimming size to

retrieve only full-length sequences with low error rates,

potentially increasing the discovery rate of rare OTUs.

Thus, we trimmed at 248 base for forward reads and 240

base for reverse reads. 

Each refined sequencing read was taxonomically

assigned by aligning it to sequences in the HOMD data-

base [12]. A total of 8 phyla, 43 genera, and 298 species

were detected. The average number of species deter-

mined and number of unique taxa assigned was higher

in HiSeq compared to MiSeq, suggesting HiSeq may

have advantage over MiSeq to identify taxa that are rare

in abundance. 

To compare microbial complexity, alpha and beta

diversity was analyzed. Alpha and beta diversity was

similar between MiSeq and HiSeq samples. In accor-

dance with previous study [23], this suggests that micro-

bial diversity is not likely to provide additional insight

by increasing the sequencing depth. 

Next, correlation of relative abundance assigned by

each platform was analyzed. The preprocessed sequences

are clustered into Operational Taxonomic Units (OTUs),

which in traditional taxonomy represent groups of

organisms defined by intrinsic phenotypic similarity

that constitute candidate taxa [24]. The threshold level

is traditionally set at 97% of sequence similarity [25] and

each representative sequences were assigned to specific

taxonomy. In the process of OTU clustering and taxo-

nomic assignment, rare taxa likely to be more vulnera-

ble to clustering and representative sequence picking. In

highly abundant taxa, all the assigned taxa were

assigned in both platforms. In moderately abundant

taxa, 38 taxa was uniquely assigned by HiSeq analysis.

In rare taxa, only 43.7% of the assigned taxa were

assigned by both platforms and 192 taxa was only

assigned by MiSeq while 340 taxa was only assigned by

HiSeq analysis. This result are in accordance with previ-

ous report that deeper sequencing are suggested to be

advantageous to identify taxa that are rare in microbial

communities [26]. When correlation between HiSeq and

MiSeq was compared depending on relative abundance,

the correlation coefficient of highly abundant taxa was

nearly 1 suggesting a perfect correlation between HiSeq

and MiSeq analysis while correlation was weaker in

moderately abundant and rare taxa. Since unmatched

taxa influence the correlation outcome, we analyzed only

matched taxa in rarely abundant taxa and found that

correlation coefficient was over 0.6 which suggest that

relative abundance was conserved between platforms

within the matched rare taxa. Taken together, in highly

abundant taxa, all the assigned taxa showed similar

assignment between platforms suggesting sequencing

depth or platform does not influence the result. On the

other hand, in rare taxa, there were many taxa uniquely

assigned by either platforms and HiSeq produced more

unique taxa suggesting deeper sequencing may provide

advantage in detecting rare taxa. 

Conclusion

As more microbiome studies are designed, a relevant

question arises whether to obtain deeper coverage of

samples or to increase the number of samples that are

sequenced. In this study, the data generated by HiSeq

and MiSeq was compatible but differed mostly in scale.

Although MiSeq is most commonly used for microbiome

study, HiSeq 2500 was also compatible for microbiome

study. Moreover, HiSeq platform may allow massively
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parallel sequencing with improved resolution for detect-

ing rare taxa. 
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