DOI QR코드

DOI QR Code

Deep Learning Algorithm and Prediction Model Associated with Data Transmission of User-Participating Wearable Devices

사용자 참여형 웨어러블 디바이스 데이터 전송 연계 및 딥러닝 대사증후군 예측 모델

  • Received : 2020.11.06
  • Accepted : 2020.12.14
  • Published : 2020.12.31

Abstract

This paper aims to look at the perspective that the latest cutting-edge technologies are predicting individual diseases in the actual medical environment in a situation where various types of wearable devices are rapidly increasing and used in the healthcare domain. Through the process of collecting, processing, and transmitting data by merging clinical data, genetic data, and life log data through a user-participating wearable device, it presents the process of connecting the learning model and the feedback model in the environment of the Deep Neural Network. In the case of the actual field that has undergone clinical trial procedures of medical IT occurring in such a high-tech medical field, the effect of a specific gene caused by metabolic syndrome on the disease is measured, and clinical information and life log data are merged to process different heterogeneous data. That is, it proves the objective suitability and certainty of the deep neural network of heterogeneous data, and through this, the performance evaluation according to the noise in the actual deep learning environment is performed. In the case of the automatic encoder, we proved that the accuracy and predicted value varying per 1,000 EPOCH are linearly changed several times with the increasing value of the variable.

본 논문은 최근 다양한 종류의 웨어러블 디바이스가 헬스케어 도메인에 급증하여 사용되고 있는 상황에서 최신 첨단 기술이 실제 메디컬 환경에서 개인의 질병예측이라는 관점을 바라본다. 사용자 참여형 웨어러블 디바이스를 통하여 임상 데이터와 유전자 데이터, 라이프 로그 데이터를 병합하여 데이터를 수집, 처리, 전송하는 과정을 걸쳐 딥뉴럴 네트워크의 환경에서 학습모델의 제시와 피드백 모델을 연결하는 과정을 제시한다. 이러한 첨단 의료 현장에서 일어나는 메디컬 IT의 임상시험 절차를 걸친 실제 현장의 경우 대사 증후군에 의한 특정 유전자가 질병에 미치는 영향을 측정과 더불어 임상 정보와 라이프 로그 데이터를 병합하여 서로 각기 다른 이종 데이터를 처리하면서 질병의 특이점을 확인하게 된다. 즉, 이종 데이터의 딥뉴럴 네트워크의 객관적 적합성과 확실성을 증빙하게 되고 이를 통한 실제 딥러닝 환경에서의 노이즈에 따른 성능 평가를 실시한다. 이를 통해 자동 인코더의 경우의 1,000 EPOCH당 변화하는 정확도와 예측치가 변수의 증가 값에 수차례 선형적으로 변화하는 현상을 증명하였다.

Keywords

Acknowledgement

This work was supported by the Technology Innovation Program no. 20002781, funded by the Ministry of Trade, Industry & Energy(MOTIE). This work was supported by Sehan Univ. grant in 2020.

References

  1. Azzeh, J., Zahran, B., and Alqadi, Z. (2018). Salt and pepper noise: Effects and removal, JOIV, International Journal on Informatics Visualization, 2(4), 252-256. https://doi.org/10.30630/joiv.2.4.151
  2. Bierut, L. J. (2010). Convergence of genetic findings for nicotine dependence and smoking related diseases with chromosome 15q24-25, Trends in Pharmacological Sciences, 31(1), 46-51. https://doi.org/10.1016/j.tips.2009.10.004
  3. Buckman, J., Roy, A., Raffel, C., and Goodfellow, I. (2018). Thermometer encoding: One hot way to resist adversarial examples, International Conference on Learning Representations.
  4. Ciresan, D. C., Giusti, A., Gambardella, L. M., and Schmidhuber, J. (2013). Mitosis detection in breast cancer histology images with deep neural networks. In International conference on medical image computing and computer-assisted intervention, Springer, Berlin, Heidelberg. 411-418.
  5. CNP. (2020). COVID-19 Health monitoring function enhancement, https://www.chosun.com/economy/tech_it/2020/10/03/F56YLXSXKFHMFOI3DLMPDTBP24/ (Accessed on Oct. 4th, 2020)
  6. Dolph, C. V., Alam, M., Shboul, Z., Samad, M. D., and Iftekharuddin, K. M. (2017). Deep learning of texture and structural features for multiclass Alzheimer's disease classification, 2017 International Joint Conference on Neural Networks (IJCNN) 2259-2266.
  7. Du, M., Liu, N., Song, Q., and Hu, X. (2018). Towards explanation of dnn-based prediction with guided feature inversion, Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 1358-1367
  8. Esakkirajan, S., Veerakumar, T., Subramanyam, A. N., and PremChand, C. H. (2011). Removal of high density salt and pepper noise through modified decision based unsymmetric trimmed median filter, IEEE Signal processing Letters, 18(5), 287-290. https://doi.org/10.1109/LSP.2011.2122333
  9. Freudenberg, J., and Propping, P. (2002). A similarity-based method for genome-wide prediction of disease-relevant human genes, Bioinformatics, 18 (suppl_2), S110-S115. https://doi.org/10.1093/bioinformatics/18.suppl_2.S110
  10. Fu, B., Zhao, X., Li, Y., Wang, X., and Ren, Y. (2019). A convolutional neural networks denoising approach for salt and pepper noise, Multimedia Tools and Applications, 78(21), 30707-30721. https://doi.org/10.1007/s11042-018-6521-4
  11. Furberg, H., Kim, Y., Dackor, J., Boerwinkle, E., Franceschini, N., Ardissino, D., ... and Absher, D. (2010). Genome-wide meta-analyses identify multiple loci associated with smoking behavior, Nature Genetics, 42(5), 441. https://doi.org/10.1038/ng.571
  12. Grapov, D., Fahrmann, J., Wanichthanarak, K., and Khoomrung, S. (2018). Rise of deep learning for genomic, proteomic, and metabolomic data integration in precision medicine, Omics: A Journal of Integrative Biology, 22(10), 630-636. https://doi.org/10.1089/omi.2018.0097
  13. Hannun, A. Y., Rajpurkar, P., Haghpanahi, M., Tison, G. H., Bourn, C., Turakhia, M. P., and Ng, A. Y. (2019). Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network, Nature Medicine, 25(1), 65. https://doi.org/10.1038/s41591-018-0268-3
  14. Hamet, P., and Tremblay, J. (2017). Artificial intelligence in medicine, Metabolism, 69, S36-S40.
  15. Lee, H-S. and Jeong, T., (2019) Institutional Review Board, no. 201901-HR-003-02. 2019. 4. 26. pp. 1-15.
  16. Jeong, T. (2020). Time-series Data Classification and Analysis associated with Machine Learning Algorithms for Cognitive Perception and Phenomenon. IEEE Access, 12(3), 1-10, https://doi.org/10.1109/ACCESS.2020.3018477
  17. Jeong, T. (2020). Deep Neural Network Algorithm Feedback Model with Behavioral Intelligence and Forecast Accuracy, Symmetry, 12(9), 1465-1476, https://doi.org/10.3390/sym12091465
  18. Koul, A., Arnoult, E., Lounis, N., Guillemont, J., and Andries, K. (2011). The challenge of new drug discovery for tuberculosis, Nature, 469(7331), 483-490. https://doi.org/10.1038/nature09657
  19. Mak, K. K., and Pichika, M. R. (2019). Artificial intelligence in drug development: present status and future prospects, Drug Discovery Today, 24(3), 773-780. https://doi.org/10.1016/j.drudis.2018.11.014
  20. Mythili, T., Mukherji, D., Padalia, N., and Naidu, A. (2013). A heart disease prediction model using SVM-Decision Trees-Logistic Regression (SDL), International Journal of Computer Applications, 68(16), 134-142
  21. Klok, F. A., Boon, G. J., Barco, S., Endres, M., Geelhoed, J. M., Knauss, S., ... and Siegerink, B. (2020). The Post-COVID-19 Functional Status scale: a tool to measure functional status over time after COVID-19, European Respiratory Journal, 56(1), 97-106
  22. Lambrechts, D., Buysschaert, I., Zanen, P., Coolen, J., Lays, N., Cuppens, H., ... and Wijmenga, C. (2010). The 15q24/25 susceptibility variant for lung cancer and chronic obstructive pulmonary disease is associated with emphysema, American Journal of Respiratory and Critical Care Medicine, 181(5), 486-493. https://doi.org/10.1164/rccm.200909-1364OC
  23. Pittman, J., Huang, E., Dressman, H., Horng, C. F., Cheng, S. H., Tsou, M. H., ... and Nevins, J. R. (2004). Integrated modeling of clinical and gene expression information for personalized prediction of disease outcomes, Proceedings of the National Academy of Sciences, 101(22), 8431-8436. https://doi.org/10.1073/pnas.0401736101
  24. Raaschou-Nielsen, O., Sorensen, M., Overvad, K., Tjonneland, A., and Vogel, U. (2008). Polymorphisms in nucleotide excision repair genes, smoking and intake of fruit and vegetables in relation to lung cancer, Lung Cancer, 59(2), 171-179. https://doi.org/10.1016/j.lungcan.2007.08.018
  25. Reesink, H. W., Engelfriet, C. P., Schennach, H., Gassner, C., Wendel, S., Fontão‐ Wendel, R., ... and Pham, B. N. (2008). Donors with a rare pheno (geno) type. Vox sanguinis, 95(3), 236-253. https://doi.org/10.1111/j.1423-0410.2008.01084.x
  26. Sathyanarayana, A., Joty, S., Fernandez-Luque, L., Ofli, F., Srivastava, J., Elmagarmid, A., and Taheri, S. (2016). Sleep quality prediction from wearable data using deep learning, JMIR mHealth and uHealth, 4(4), e125. https://doi.org/10.2196/mhealth.6562
  27. Walker R. J. (2014). Seeing ourselves through technology: How we use selfies, blogs and wearable devices to see and shape ourselves, Springer Nature.
  28. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P. A., and Bottou, L. (2010). Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion, Journal of Machine Learning Research, 11(12), 187-199
  29. Zhang, L., and Wu, X. (2006). An Edge-guided Image Interpolation Algorithm via Directional Filtering and Data Fusion, IEEE Transactions on Image Processing, 15(8), 2226-2238. https://doi.org/10.1109/TIP.2006.877407