DOI QR코드

DOI QR Code

글읽기에서 나타난 성인과 청소년의 중심와주변 정보처리: 고정시간 분포에 대한 확산모형 분석

Parafovea Information Processing of Adults and Adolescents in Reading: Diffusion Model Analysis on Distributions of Eye Fixation Durations

  • 주혜리 (서울대학교 인지과학협동과정) ;
  • 고성룡 (서울대학교 인지과학협동과정)
  • 투고 : 2020.11.02
  • 심사 : 2020.11.02
  • 발행 : 2020.12.31

초록

이 연구의 목적은 글읽기의 주요한 현상인 중심와주변 미리보기 효과(parafovea preview effect)의 중요성을 검증하고, 성인과 청소년을 대상으로 안구운동추적 실험을 통해 연령이 다른 두 집단의 중심와주변 미리보기 효과를 비교해 보고자 한다. 또한 안구운동 추적실험을 통해 얻은 결과자료를 단일경계 확산모형(diffusion model)의 시작점(starting point) 파라미터로 설명되는지 확인할 것이다. 실험은 경계선 기법(boundary technique)을 이용하여 중심와주변 정보처리를 관찰하였다. 실험 1에서는 중심와주변에 미리보기 정보로 고빈도 단어를 제시하는 것과 미리보기 정보를 차폐하는 것을 비교하였다. 실험 2에서는 중심와주변 미리보기 정보로 저빈도 단어를 제공하였고, 중심와주변 미리보기를 차폐한 것과 비교하였다. 두 실험 결과, 청소년 집단과 성인 집단에서 중심와주변에 정보가 주어졌을 때 중심와주변 미리보기 이득 효과를 확인하였다. 또한 중심와주변에 높인 정보 성질, 즉 단어의 빈도에 따라 두 집단의 첫고정시간, 단일고정시간, 주시시간에서 고정시간 차이를 살펴보았다. 두 실험에서 얻은 첫고정시간 데이터를 분위수로 나누고 단일경계 확산모형에 fitting한 결과, 중심와주변 정보처리가 시작점 파라미터로 설명되는 것을 확인하였다.

This study compares the parafovea preview effect of adolescent group and adult group with different ages using eye tracking experiment. Also, this study confirms that the starting point parameter of the one boundary diffusion model can explain the data obtained through eye tracking experiments. In two experiments, parafoveal information processing was examined using the boundary technique. In Experiment 1, reading times were compared between the conditions given high frequency words preview versus masking preview. In Experiment 2, the condition in which low frequency words were given to parafovea preview information and the condition in which parafovea preview was masked were compared. We found that both the adolescent group and the adult group showed a parafovea preview effect. Also, first fixation, single fixation, and gaze duration of the two groups were different based on the word property shown in the parafovea. The first fixation data obtained in the two experiments were divided into quantiles and fitted into one boundary diffusion model. From the results, we argue that the parafovea preview information processing in the reading was described as the starting point parameter of the one boundary diffusion model.

키워드

과제정보

이 논문은 2017년 대한민국 교육부와 한국연구재단 지원을 받아 수행된 연구입니다(NRF S1A5B5A07058610).

참고문헌

  1. 고성룡, 윤소정, 민철홍, 최경순, 고선희, 황민아 (2012). 어린이 글 읽기에서 나타나는 안구 운동의 특징. 인지과학, 21(4), 481-503.
  2. 고성룡, 주혜리, 이다정 (2020). 확산모형 분석도구: SNUDM, Korean Journal of Cognitive Science, 31(1). 1-23.
  3. 고성룡, 횽효진, 윤소정, 조병환 (2008). 우리글 명사 어절에서의 단어 빈도 효과: 안구운동 추적 연구. 한국심리학회지: 실험, 20(1), 21-37.
  4. 민철홍 (2012). 우리글을 읽을 때 음운 정보의 효과 탐색, 서울대학교 석사학위논문.
  5. 이춘길 (2004). 한글을 읽는 시선의 움직임. 서울대학교 출판부.
  6. 주혜리(2015). 우리글 읽기에서 나타나는 고정시간 분포에 대한 확산모형 분석, 서울대학교 박사학위논문.
  7. 코마츠 요시타카(2017). 시선 추적을 통한 일본어 읽기에서 보이는 중심와주변의 의미처리 연구, 서울대학교 박사학위논문.
  8. 최소영 (2012). 안구운동추적기법을 활용한 읽기장애 연구의 도입과 전망: 국내 연구 현황을 중심으로. 학습장애연구, 9(1), 121-136
  9. 황지영 (2012). The Effect of Word Frequency and Masking on the distributions of Eye Fixation Durations, 서울대학교 석사학위논문.
  10. Adams, M. J. (1990). Beginning to Read: Thinking and Learning about Print. Cambridge, MA: Bolt, Beranek, and Newman, Inc. ED 317 950
  11. Andrews, S., & Heathcote, A. (2001). Distinguishing common and task specific processes in word identification: A matter of some moment? Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 514-544. https://doi.org/10.1037//0278-7393.27.2.514
  12. Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59, 390-412. https://doi.org/10.1016/j.jml.2007.12.005
  13. Balota, D., & Chumbley, J. (1984). Are lexical decisions a good measure of lexical access? The role of word frequency in the neglected decision stage. Journal of Experimental Psychology: Human Perception and Performance, 10(3), 340-357. https://doi.org/10.1037//0096-1523.10.3.340
  14. Balota, D. A., & Spieler, D. H. (1999). Word-frequency, repetition, and lexicality effects in word recognition tasks: Beyond measures of central tendency. Journal of Experimental Psychology: General, 128, 32-55. https://doi.org/10.1037//0096-3445.128.1.32
  15. Balota, D., Yap, M. & Cortese, M. (2006). Visual word recognition: the journey from features to meaning (a travel update). In In M. Traxler & M. A. Gernsbacher (Eds. Handbook of psycholinguistics (2nd edition).
  16. Balota, D. A., Yap, M.J., Cortese, M.I, Watson, J.M. (2008). Beyond response latency: An RT distributional analysis of semantic priming. Journal of Memory & Language 59, 495-523. https://doi.org/10.1016/j.jml.2007.10.004
  17. Bates, D., & Sarkar, D., the R Core team. (2007). nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-85.
  18. Blanchard, H. E., Pollatsek, A., & Rayner, K. (1989). The acquisition of parafoveal word information in reading. Perception & Psychophysics, 46, 85-94. https://doi.org/10.3758/BF03208078
  19. Brown, G. D. A., & Watson, F. L. (1987). First in, first out: Word learning age and spoken word frequency as predictors of word familiarity and word naming latency. Memory & Cognition, 15, 208-216. https://doi.org/10.3758/BF03197718
  20. Brown, S. D. & Heathcote, A. (2008).The simplest complete model of choice response time: Linear ballistic accumulation. Cognitive Psychology, 57 (3), 153-178 https://doi.org/10.1016/j.cogpsych.2007.12.002
  21. Brown, S., Ratcliff, R., & Smith, P. L. (2006). Evaluating methods for approximating stochastic differential equations. Journal of Mathematical Psychology, 50, 402-410. https://doi.org/10.1016/j.jmp.2006.03.004
  22. Busemeyer, J. R., & Townsend, J. T. (1993). Decision field theory: A dynamic-cognitive approach to decision making in an uncertain environment. Psychological Review, 100, 432-459. https://doi.org/10.1037/0033-295X.100.3.432
  23. Carpenter, R. H. S. (2004). Contrast, probability, and saccadic latency: Evidence for independence of detection and decision. Current Biology, 14, 1576-1580. https://doi.org/10.1016/j.cub.2004.08.058
  24. Carpenter RHS, McDonald SA. (2006). LATER predicts saccade latency distributions in reading. Experimental Brain Research 177,176-83. https://doi.org/10.1007/s00221-006-0666-5
  25. Chace, K. H., Rayner, K., & Well, A. D. (2005). Eye movements and phonological preview benefit: Effects of reading skill. Canadian Journal of Experimental Psychology, 59, 209-217. https://doi.org/10.1037/h0087476
  26. Cuetos, F., Ellis, A. W., & Alvarez, B. (1999). Naming times for the Snodgrass and Vanderwart pictures in Spanish. Behavior Research Methods, Instruments and Computers, 31, 650-658. https://doi.org/10.3758/BF03200741
  27. Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior,19, 450-466. https://doi.org/10.1016/S0022-5371(80)90312-6
  28. Daneman, M., & Carpenter, P. A. (1983). Individual differences in integratinginformation between and within sentences. Journal of ExperimentalPsychology: Learning, Memory, and Cognition, 9, 561-584.
  29. Denbuurman, R., Roersema, T., & Gerrissen, J. F. (1981). Eye-Movements and the Perceptual Span in Reading. Reading Research Quarterly, 16, 227-235. https://doi.org/10.2307/747557
  30. Drieghe, D., Rayner, K., & Pollatsek A. (2008). Mislocated fixations can account for parafoveal-on-foveal effects in eye movements during reading. Quarterly Journal of Psychology, 61, 1239-1249.
  31. Duffy, S. A., Morris, R. K., Rayner, K. (1988). Lexical ambiguity and fixation times in reading. Journal of Memory and Language. 27(4), 429-446. https://doi.org/10.1016/0749-596X(88)90066-6
  32. Ehrlich, S. F., & Rayner, K. (1981). Contextual effects on word recognition and eye movements during reading. Journal of Verbal Learning and Verbal Behavior, 20, 641-655. https://doi.org/10.1016/S0022-5371(81)90220-6
  33. Engbert, R., Nuthmann, A., Richter, E. M. & Kliegl, R. (2005). SWIFT: A Dynamical Model of Saccade Generation During Reading. Psychological Review,112(4), 777-813. https://doi.org/10.1037/0033-295X.112.4.777
  34. Engle, R. W., Cantor, J., & Carullo, J. J. (1992). Individual differences in working memory and comprehension: A test of four hypotheses. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 972-992. https://doi.org/10.1037//0278-7393.18.5.972
  35. Forster, K., & Chambers, S. M. (1973). Lexical access and naming time. Journal of Verbal Learning and Verbal Behavior, 12, 627-635. https://doi.org/10.1016/S0022-5371(73)80042-8
  36. Gillespie D. T. (1996), Exact numerical simulation of the Ornstein-Uhlenbeck process and its integral, Phys. Rev. E, 54, 2084 https://doi.org/10.1103/PhysRevE.54.2084
  37. Grice, G. R. (1968). Stimulus intensity and response evocation. Psychological Review, 75, 359-373. https://doi.org/10.1037/h0026287
  38. Grice, G. R. (1972). Application of a variable criterion model to auditory reaction time as a function of the type of catch trial. Perception & Psychophysics, 12, 103-107. https://doi.org/10.3758/BF03212853
  39. Grice, G. R., Canham, L., & Boroughs, J. M. (1984). Combination rule for redundant information in reaction time tasks with divided attention. Perception & Psychophysics, 35, 451-463. https://doi.org/10.3758/BF03203922
  40. Grice, G. R., Nullmeyer, R., & Spiker, V. A. (1982). Human reaction time: Toward a general theory. Journal of Experimental Psychology: General, 111, 135-153. https://doi.org/10.1037//0096-3445.111.1.135
  41. Heathcote, A., Popiel, S. J., & Mewhort, D. J. K. (1991). Analysis of response time distributions: An example using the Stroop task. Psychological Bulletin, 109, 340-347. https://doi.org/10.1037/0033-2909.109.2.340
  42. Henderson, J. M., Pollatsek, A., & Rayner, K. (1989). Covert visual attention and extrafoveal information use during object identification. Perception & Psychophysics, 45, 196-208. https://doi.org/10.3758/BF03210697
  43. Huey, E. B. (1908). The psychology and pedagogy of reading. NY: Macmillan.
  44. Inhoff, A. W., & Rayner, K. (1986). Parafoveal word processing during eye fixations in reading: Effects of word frequency. Perception and Psychophysics, 40, 431-439. https://doi.org/10.3758/BF03208203
  45. Inhoff, A. W., Starr, M., & Liu, W. M. (1998). Eye-movement-contingent display changes are not compromised by flicker and phosphor persistence. Psychonomic Bulletin & Review, 5, 101-106. https://doi.org/10.3758/BF03209463
  46. Jones, M. & Dzhafarov, E. N. (2014). Unfalsifiability and mutual translatability of major modeling schemes for choice reaction time. Psychology Review,121(1), 1-32. https://doi.org/10.1037/a0034190
  47. Juel, C. (1991). Beginning reading. In R. Barr, M. L. Kamil, P. B. Mosenthal, & P. D. Pearson (Eds.), Handbook of reading research (pp. 759-788). New York: Longman.
  48. Juhasz, B. J., & Rayner, K. (2003). Investigating the effects of a set of intercorrelated variables on eye fixation durations in reading. Journal of Experimental Psychology: Learning, Memory & Cognition, 29, 1312-1318. https://doi.org/10.1037/0278-7393.29.6.1312
  49. Juhasz, B. J., & Rayner, K. (2006). The role of age-of-acquisition and word frequency in reading: Evidence from eye fixation durations. Visual Cognition, 13, 846-863. https://doi.org/10.1080/13506280544000075
  50. Kang, B. & Kim, H. (2004). The analysis of Korean morphology and word frequency 2, Research Institute of Korea study.
  51. Kliegl, R., Nuthmann, A., & Engbert, R. (2006). Tracking the mind during reading: The influence of past, present, and future words on fixation durations. Journal of Experimental Psychology: General, 135,13-35.
  52. Kliegl, R., Risse, S., & Laubrock, J. (2007). Preview Benefit and Parafoveal-on-Foveal Effects from Word N+2. Journal of Experimental Psychology: Human Perception and Performance, 33(5), 1250-1255. https://doi.org/10.1037/0096-1523.33.5.1250
  53. Klin, C. M., Guzmán, A. E., & Levine, W. H. (1999). Prevalence and persistence of predictive inferences. Journal of Memory and Language, 40(4), 593-604. https://doi.org/10.1006/jmla.1998.2628
  54. Koh, S., Hong, H., Yoon, S., & Cho, P. (2008). The frequency effect in Korean noun eojeols: an eye-tracking study, The Korean Journal of Experimental Psychology, 20(1), 21-37
  55. Koh, S., Yoon, N., Yoon, S., & Pollatsek, A. (2012). Word Frequency and Root-Morpheme Frequency Effects on Processing of Korean Particle-Suffixed Words, Journal of Cognitive Psychology, 25 (1), 64-67. https://doi.org/10.1080/20445911.2012.740482
  56. Link, S. W., & Heath, R. A. (1975). A sequential theory of psychological discrimination. Psychometrika, 40, 77-105. https://doi.org/10.1007/BF02291481
  57. Long, D. L., Oppy, B. J., & Seely, M. R. (1994). Individual differences in the time course of inferential processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 1456-1470. https://doi.org/10.1037//0278-7393.20.6.1456
  58. Lovett, Maureen W. Warren-Chaplin, Patricia M., Ransby, Marilyn J. & Borden, Susan L. (1990). Training the word recognition skills of reading disabled children: Treatment and transfer effects. Journal of Educational Psychology, 82(4), 769-780. https://doi.org/10.1037/0022-0663.82.4.769
  59. Matzke, D. & Wagenmakers, E. -J. (2009). Psychological interpretation of ex-Gaussian and shifted Wald parameters: A diffusion model analysis. Psychonomic Bulletin & Review, 16, 798-817. https://doi.org/10.3758/PBR.16.5.798
  60. McConkie, G. W. (1979). On the role and control of eye movements in reading. In E A. Kolers, M.E. Wrolstad, & H. Bouma (Eds.), Processing of visible language (pp. 37-48). New York: Plenum.
  61. McConkie, G. W. (1981). Evaluating and reporting data quality in eye movement research. Behavior Research Methods & Instrumentation, 13, 97-106. https://doi.org/10.3758/BF03207916
  62. McConkie, G. W., & Rayner, K. (1975). The span of the effective stimulus during a fixation in reading. Perception & Psychophysics, 17, 578-586. https://doi.org/10.3758/BF03203972
  63. McKoon, G. & Ratcliff, R. (2018). Adults with poor reading skills, older adults, and college students: The meanings they understand during reading using a diffusion model analysis. Journal of Memory and Language, 102, 115-129 https://doi.org/10.1016/j.jml.2018.05.005
  64. Monsell, S. (1991). The nature and locus of word frequency effects in reading. In D. Besner G. W. Humphreys(Eds.), Basic processes in reading: Visual word recognition, (pp. 148-197). Hillsdale, NJ:Erlbaum.
  65. Morrison, C. M. & Ellis, A. W. (1995). Roles of word frequency and age of acquisition in word naming and lexical decision, Journal of experimental psychology: Learning, Memory and Cognition, 21(1), 116-133 https://doi.org/10.1037//0278-7393.21.1.116
  66. O'Regan, J. K. (1979). Eye guidance in reading: Evidence for the linguistic control hypothesis. Perception & Psychophysics, 25, 501-509. https://doi.org/10.3758/BF03213829
  67. O'Regan, J. K. (1990). Eye movements and reading. In E. Kowler (Ed.), Eye movements and their role in visual and cognitive processes (pp.395-453). Amsterdam: Elsevier.
  68. Osaka, N. (1992). Size of saccade and fixation duration of eye movements during reading: Psychophysics of Japanese text processing. Journal of the Optical Society of America, 9, 5-13. https://doi.org/10.1364/josaa.9.000005
  69. Palmer, J., Huk, A. C., & Shadlen, M. N. (2005). The effect of stimulus strength on the speed and accuracy of a perceptual decision. Journal of Vision, 5, 376-404. https://doi.org/10.1167/5.8.376
  70. Perfetti, C., Marron, M., & Foltz, P. W. (1996). Sources of Comprehension Failure: Theoretical Perspectives and Case Studies. In C. Cornoldi & J. Oakhill (Eds.) Reading Comprehension Difficulties: Processes and interventions, 137-165. Hillsdale, NJ: Lawrence Erlbaum Assoc.
  71. Plourde, C. E., & Besner, D. (1997). On the locus of the word frequency effect in visual word recognition. Canadian Journal of Experimental Psychology, 51, 181-194. https://doi.org/10.1037/1196-1961.51.3.181
  72. Pollatsek, A., & Rayner, K. (1989). Reading. In M. I. Posner (Ed.), Foundations of cognitive science. Cambridge: MIT Press, 1989.
  73. Pollatsek, A., Reichle, E. D., & Rayner, K. (2006). Tests of the E-Z Reader model: Exploring the interface between cognition and eye-movement control. Cognitive Psychology, 52, 1-52. https://doi.org/10.1016/j.cogpsych.2005.06.001
  74. Raaijmakers, J. G. W., Schrijnemakers, J. M. C., & Gremmen, F. (1999). How to deal with "the language-as fixed-effect fallacy": Common misconceptions and alternative solutions. Journal of Memory and Language, 41(3), 416-426. https://doi.org/10.1006/jmla.1999.2650
  75. Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59-108. https://doi.org/10.1037/0033-295X.85.2.59
  76. Ratcliff, R. (1988). Continuous versus discrete information processing: Modeling the accumulation of partial information. Psychological Review, 95, 238-255. https://doi.org/10.1037/0033-295X.95.2.238
  77. Ratcliff, R. (2001). Putting noise into neurophysiological models of simple decision making. Nature Neuroscience, 4, 336. https://doi.org/10.1038/85956
  78. Ratcliff, R. (2001). Diffusion and random walk processes. International encyclopedia of the social and behavioral sciences, Oxford, England: Elsevier, 6, 3668-3673.
  79. Ratcliff, R. (2002). A diffusion model account of reaction time and accuracy in a brightness discrimination task: Fitting real data and failing to fit fake but plausible data. Psychonomic Bulletin and Review, 9, 278-291. https://doi.org/10.3758/BF03196283
  80. Ratcliff, R., Gomez, P, & McKoon, G. (2004). A diffusion model account of the lexical decision task. Psychological Review, 111(1), 159-182 https://doi.org/10.1037/0033-295x.111.1.159
  81. Ratcliff, R. & McKoon, G. (2008). The diffusion decision model: Theory and data for two-choice decision tasks. Neural Compuation, 20, 873-922. https://doi.org/10.1162/neco.2008.12-06-420
  82. Ratcliff, R. & Strayer, D. (2013). Modeling simple driving tasks with a one boundary diffusion model. Psychonomic bulletin & review, 21( 3), 577-589. https://doi.org/10.3758/s13423-013-0541-x
  83. Ratcliff, R. & Tuerlinckx, F. (2002). Estimating parameters of the diffusion model: Approaches to the contaminant reaction times and parameter variability. Psychonomic Bulletin & Review, 9(3), 438-481. https://doi.org/10.3758/BF03196302
  84. Rayner, K., Reichle, E. D., Stroud, M. J., Williams, C. C., & Pollatsek, A. (2006). The effect of word frequency, word predictability, and font difficulty on the eye movements of young and older readers. Psychology and Aging, 21, 448-465. https://doi.org/10.1037/0882-7974.21.3.448
  85. Ratcliff, R. & Van Dongen, H. P. A. (2011). A diffusion model for one choice reaction time tasks and the cognitive effects of sleep deprivation. Proceedings of the National Academy of Sciences,108, 11285-11290. https://doi.org/10.1073/pnas.1100483108
  86. Rayner, K. (1998) Eye Movements in reading and Information Processing: 20 Years of research. Psychological Bulletin, 124(3), 372-422. https://doi.org/10.1037/0033-2909.124.3.372
  87. Rayner, K. (2009). Eye movements and landing positions in reading: A retrospective. Perception, 38, 895-899 https://doi.org/10.1068/pmkray
  88. Rayner, K., Ashby, J., Pollatsek, A., & Reichle, E. D. (2004). The effects of word frequency and predictability on eye movements in reading: Implications for the E-Z Reader model. Journal of Experimental Psychology: Human Perception and Performance, 30, 720-732. https://doi.org/10.1037/0096-1523.30.4.720
  89. Rayner,K., & Duffy, S. A. (1986). Lexical complexity and fixation times in reading: Effects of word frequency, verb complexity, and lexical ambiguity. Memory & Cognition, 14(3), 191-201. https://doi.org/10.3758/BF03197692
  90. Rayner, K., & McConkie, G. W. (1976). What guides a reader's eye movements? Vision Research, 16, 829-837. https://doi.org/10.1016/0042-6989(76)90143-7
  91. Rayner, K., Murphy, L., Henderson, J. M.. & Pollatsek, A. (1989). Selective attentional dyslexia. Cognitive Neuropsychology, 6, 357-378. https://doi.org/10.1080/02643298908253288
  92. Rayner, K., & Pollatsek, A. (1981) Eye movement control during reading: Evidence for direct control. Quarterly Journal of Experimental Psychology, 33A, 351-373. https://doi.org/10.1080/14640748108400798
  93. Rayner, K., Sereno, S.C., & Raney, G. E. (1996). Eye movement control in reading: A comparison of two types of models. Journal of Experimental Psychology: Human Perception and Performance, 22, 1188-1200. https://doi.org/10.1037//0096-1523.22.5.1188
  94. Reichle, E. D., Pollatsek, A. & Rayner, K. (2006). E-Z Reader: A cognitive-control, serial-attention model of eye-movement behavior during reading. Cognitive Systems Research, 7, 4-22. https://doi.org/10.1016/j.cogsys.2005.07.002
  95. Reichle, E. D., Pollatsek, A., Fisher, D. L., & Rayner, K. (1998). Toward a model of eye movement control in reading. Psychological Review, 105, 125-157. https://doi.org/10.1037/0033-295X.105.1.125
  96. Reichle, E. D., Rayner, K., & Pollatsek, A. (1999). Eye movement control in reading: Accounting for initial fixation locations and refixations within the E-Z reader model. Vision Research, 39, 4403-4411. https://doi.org/10.1016/S0042-6989(99)00152-2
  97. Reichle, E. D., Rayner, K., & Pollatsek, A. (2003). The E-Z Reader model of eye movement control in reading: Comparison to other models. Brain and Behavioral Sciences, 26, 445-476. https://doi.org/10.1017/S0140525X03000104
  98. Revuz, D., and Yor, M. Continuous Martingales and Brownian Motion (Third Edition). Springer-Verlag, Berlin, 1999.
  99. Seidenberg, M. S. and McClelland, J. L. (1989). A distributed, developmental Model of word recognition and naming. Psychological Review, 96, 523-568 https://doi.org/10.1037/0033-295X.96.4.523
  100. Smith, P. L., & Ratcliff, R. (2004). Psychology and neurobiology of simple decisions. Trends in Neuroscience, 27, 161-168. https://doi.org/10.1016/j.tins.2004.01.006
  101. Snodgrass, J. G., & Yuditsky, T. (1996). Naming times for the Snodgrass and Vanderwart pictures. Behavior Research Methods, Instruments, & Computers, 28, 516-536. https://doi.org/10.3758/BF03200540
  102. Stanovich, K. E. (1986). Matthew Effects in Reading: Some Consequences of IndividualDifferences in the Acquisition of Literacy. Reading. Research Quarterly, 21(4), 360-407. https://doi.org/10.1598/RRQ.21.4.1
  103. Staub, A. (2011). The effect of lexical predictability on distributions of eye fixation durations. Psychon Bull Rev. 18, 371-376. https://doi.org/10.3758/s13423-010-0046-9
  104. Staub, A. & Benatar. A. (2013). Individual differences in fixation duration distributions in reading.Psychonomic Bulletin & Review, 20, 1304-1311. https://doi.org/10.3758/s13423-013-0444-x
  105. Staub, A., & Rayner, K. (2007). Eye movements and on-line comprehension processes. In G. Gaskell (Ed.), The Oxford handbook of psycholinguistics (pp. 327-342). Oxford, UK: Oxford University Press.
  106. Staub, A., White, S. J., Drieghe, D., Hollway, E. C., & Rayner, K. (2010). Distributional effects of word frequency on eye fixation durations. Journal of Experimental Psychology: Human Perception and Performance, 36, 1280-1293. https://doi.org/10.1037/a0016896
  107. Till, R., Mross, E. & Kintsch, W. (1988) Time Course of Priming for Associate and Inference Words in a Discourse Context. Memory & Cognition, 16 (4), 283-298. https://doi.org/10.3758/BF03197039
  108. Traxler, M. J. (2012). Introduction to Psycholinguistics: Understanding Language Science. Boston, MA: Wiley-Blackwell.
  109. Tuerlinckx, F., Maris, E., Ratcliff, R., & De Boeck, P. (2001). A comparison of four methods for simulating the diffusion process. Behavior Research Methods, Instruments, and Computers, 33, 443-456. https://doi.org/10.3758/BF03195402
  110. Turner, M. L., & Engle, R. W. (1989). Is working memory capacity task dependent? Journal of Memory and Language, 28, 127-154. https://doi.org/10.1016/0749-596X(89)90040-5
  111. Uhlenbeck, G. E. and Ornstein, L. S. (1930). On the theory of brownian motion. Phys. Rev., 36, 823-841. https://doi.org/10.1103/PhysRev.36.823
  112. Underwood, G., Bloomfield, R., & Clews, S. (1988). Information influences the pattern of eye fixations during sentence comprehension. Perception, 17, 267-278. https://doi.org/10.1068/p170267
  113. Underwood, G., Clews, S., & Everatt, J. (1990). How do readers know where to look next? Local information distributions influence eye fixations. Quarterly Journal of Experimental Psychology, 42A, 39-65. https://doi.org/10.1080/14640749008401207
  114. Usher, M., & McClelland, J. L. (2001). On the time course of perceptual choice: The leaky competing accumulator model. Psychological Review, 108, 550-592. https://doi.org/10.1037/0033-295X.108.3.550
  115. Usher, M., & McClelland, J. L. (2004). Loss aversion and inhibition in dynamical models of multialternative choice. Psychological Review, 111, 759-769.
  116. Van Zandt, T. (2000). How to fit a response time distribution. Psychonomic Bulletin and Review, 7, 424-465. https://doi.org/10.3758/BF03214357
  117. Vervaat, W. (1979). A Relation between Brownian Bridge and Brownian Excursion. The Annuals of Probability, 7(1), 143-149.
  118. Wagenmakers, E.-J., van der Maas, H. L. J., & Grasman, R. P. P. P. (2007). An EZ-diffusion model for response time and accuracy. Psychonomic Bulletin & Review, 4, 3-22. https://doi.org/10.3758/BF03210769
  119. Yap, M. J., & Balota, D. A. (2007). Additive and interactive effects on response time distributions in visual word recognition. Journal of Experimental Psychology: Learning, Memory, & Cognition 33, 274-296. https://doi.org/10.1037/0278-7393.33.2.274
  120. Yap, M. J., Balota, D. A., Cortese, M. J., & Watson, J. M. (2006). Single versus dual process models of lexical decision performance: Insights from RT distributional analysis. Journal of Experimental Psychology: Human Perception and Performance, 32, 1324-1344. https://doi.org/10.1037/0096-1523.32.6.1324
  121. Yap, M. J., Balota, D. A., Tse, C. -S., & Besner, D. (2008). On the additive effects of stimulus quality and word frequency in lexical decision: Evidence for opposing interactive influences revealed by RT distributional analyses. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 495-513. https://doi.org/10.1037/0278-7393.34.3.495