DOI QR코드

DOI QR Code

An Efficient Cluster Management Scheme Using Wireless Power Transfer for Mobile Sink Based Solar-Powered Wireless Sensor Networks

  • Son, Youngjae (Dept. of Software Convergence, Soongsil University) ;
  • Kang, Minjae (School of Convergence Specialization, Soongsil University) ;
  • Noh, Dong Kun (Dept. of Software Convergence, Soongsil University)
  • Received : 2019.12.26
  • Accepted : 2020.01.21
  • Published : 2020.02.28

Abstract

In this paper, we propose a scheme that minimizes the energy imbalance problem of solar-powered wireless sensor network (SP-WSN) using both a mobile sink capable of wireless power transfer and an efficient clustering scheme (including cluster head election). The proposed scheme charges the cluster head using wireless power transfer from a mobile sink and mitigates the energy hotspot of the nodes nearby the head. SP-WSNs can continuously harvest energy, alleviating the energy constraints of battery-based WSN. However, if a fixed sink is used, the energy imbalance problem, which is energy consumption rate of nodes located near the sink is relatively increased, cannot be solved. Thus, recent research approaches the energy imbalance problem by using a mobile sink in SP-WSN. Meanwhile, with the development of wireless power transmission technology, a mobile sink may play a role of energy charging through wireless power transmission as well as data gathering in a WSN. Simulation results demonstrate that increase the amount of collected data by the sink using the proposed scheme.

태양 에너지 수집형 무선 센서 네트워크(SP-WSN)는 지속적으로 에너지를 수집할 수 있어 배터리 기반 센서 네트워크의 에너지 제약 문제를 완화할 수 있다. 하지만 고정된 싱크를 사용한다면, 싱크 주변에 위치한 노드들의 에너지 소비가 상대적으로 증가하는 문제, 즉 에너지 사용 불균형 문제는 해결하지 못한다. 따라서 최근의 연구에서는 SP-WSN에 모바일 싱크를 사용하여 에너지 불균형 문제에 접근하고 있다. 한편, 무선 전력 전송 기술 발전에 따라 WSN에서 모바일 싱크가 데이터 수집뿐 아니라 무선 전력 전송을 통한 에너지 충전의 역할도 할 수 있다. 본 논문에서는 무선 전력 전송이 가능한 모바일 싱크와 효율적인 클러스터링 기법(클러스터 헤드 선출 포함)을 이용하여 SP-WSN의 에너지 불균형 문제를 최소화하는 기법을 제안한다. 제안 기법은 클러스터 헤드를 무선 전력 전송을 사용하여 충전시키고, 효과적인 헤드 선출을 통해 헤드 주변 노드의 에너지 핫스팟을 완화시켜, 결과적으로 모바일 싱크로 수집되는 데이터양을 증가시킨다.

Keywords

References

  1. I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, “Wireless sensor networks: a survey,” Computer Networks, Vol. 38, No. 4, pp. 393-422, Mar. 2002. https://doi.org/10.1016/S1389-1286(01)00302-4
  2. J. Li and P. Mohapatra, "An analytical model for the energy hole problem in many-to-one sensor networks," Proc. VTC-2005-Fall. IEEE 62nd Vehicular Technology Conference, pp. 2721-2725, 2005 (in USA)
  3. S. Sudevalayam and P. Kulkarni, "Energy harvesting sensor nodes: Survey and implications," IEEE Communications Surveys and Tutorials, Vol.13, No. 3, pp.443-461, Jul. 2011. https://doi.org/10.1109/SURV.2011.060710.00094
  4. L. Xie, Y. Shi, Y. T. Hou and A. Lou, "Wireless power transfer and applications to sensor networks," IEEE Wireless Communications, Vol. 20, No. 4, pp. 140-145, Aug. 2013. https://doi.org/10.1109/MWC.2013.6590061
  5. H. Salarian, K. Chin and F. Naghdy, “An Energy-Efficient Mobile-Sink Path Selection Strategy for Wireless Sensor Networks,” IEEE Transactions on Vehicular Technology, Vol. 63, No. 5, pp. 2407-2419, Jun. 2014. https://doi.org/10.1109/TVT.2013.2291811
  6. J. Luo and J.-P. Hubaux, "Joint Mobility and Routing for Lifetime Elongation in Wireless Sensor Networks," Proc. IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies, pp. 1735-1746, 2005. (in USA)
  7. C. Tunca, S. Isik, M. Y. Donmez and C. Ersoy, "Distributed Mobile Sink Routing for Wireless Sensor Networks: A Survey," IEEE Communications Surveys and Tutorials, Vol. 16, No. 2, pp. 877-897, Oct. 2013. https://doi.org/10.1109/SURV.2013.100113.00293
  8. M. Ma and Y. Yang, "Data gathering in wireless sensor networks with mobile collectors," Proc. IEEE International Symposium on Parallel and Distributed Processing, pp. 1-9, 2008. (in USA)
  9. J.H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press, USA, 1992.
  10. J. Kennedy, R.C. Eberhart, "Particle swarm optimization," Proc. IEEE International Conference on Neural Networks, pp. 1942-1948, 1995. (in Australia)
  11. Z.W. Geem, J.H. Kim, and G.V. Loganathan, "A New Heuristic Optimization Algorithm: Harmony Search," SIMULATION, Vol. 76, No. 2, pp. 60-68, Feb. 2001. https://doi.org/10.1177/003754970107600201
  12. Osama Moh'd Alia, "Dynamic relocation of mobile base station in wireless sensor networks using a cluster-based harmony search algorithm," Information Sciences, Vol. 385-386, pp.76-95, Apr. 2017. https://doi.org/10.1016/j.ins.2016.12.046
  13. M. Bellmore and G. L. Nemhauser, “The Traveling Salesman Problem: A Survey,” Operations Research, Vol. 16, No. 3, pp. 538-558, Jun. 1968. https://doi.org/10.1287/opre.16.3.538
  14. J. Yi, M. Kang and D. Noh, "SolarCastalia : Solar Energy Harvesting Wireless Sensor Network Simulator," International Journal of Distributed Sensor Networks, Vol. 11, No. 6, pp 1-10, Jun. 2015.
  15. Texas I., "EZ430-RF2500 Development Tool User's Guide," Texas Instruments SLAU227E, Texas Instruments Incorporate: Austin, TX, USA, 2007.