DOI QR코드

DOI QR Code

Ferromagnetism of Chalcopyrite AlGaAs2:Mn Quaternary Alloys

4원 합금 AlGaAs2:Mn의 강자성

  • Kang, Byung-Sub (Nanotechnology Research Center, Nanoscience & Mechanical Engineering, Konkuk University)
  • 강병섭 (건국대학교 나노기술연구소, 나노전자기계공학과)
  • Received : 2020.08.26
  • Accepted : 2020.11.06
  • Published : 2020.12.27

Abstract

The electronic structure and magnetic properties of chalcopyrite (CH) AlGaAs2 with dopant Mn at 3.125 and 6.25 % concentrations are investigated using first-principles calculations. The CH AlGaAs2 alloy is a p-type semiconductor with a small band-gap. The AlGaAs2:Mn shows that the ferromagnetic (FM) state is the most energetically favorable one. The Mn-doped AlGaAs2 exhibits FM and strong half-metallic ground states.The spin polarized Al(Ga,Mn)As2 state (Al-rich system) is more stable than the (Al,Mn)GaAs2 state (Ga-rich system), which has a magnetic moment of 3.82mB/Mn. The interaction between Mn-3d and As-4p states at the Fermi level dominates the other states.The states at the Fermi level are mainlyAs-4p electrons, which mediate strong interaction between the Mn-3d and As-4p states. It is noticeable that the FM ordering of dopant Mn with high magnetic moment originates from the As(4p)-Mn(3d)-As(4p) hybridization, which is attributed to the partially unfilled As-4pbands. The high FM moment of Mn is due to the double-exchange mechanism mediated by valence-band holes.

Keywords

References

  1. H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto and Y. Iye, Appl. Phys. Lett., 69, 363 (1996). https://doi.org/10.1063/1.118061
  2. J. M. D. Coey, Curr. Opin. Solid State Mat. Sci., 10, 83 (2006). https://doi.org/10.1016/j.cossms.2006.12.002
  3. T. Fukumura, Zhengwu Jin, A. Ohtomo, H. Koinuma and M. Kawasaki, Appl. Phys. Lett., 75, 3366 (1999). https://doi.org/10.1063/1.125353
  4. K. Sato and H. Katayama-Yoshida, Phys. Status Solidi B, 229, 673 (2002). https://doi.org/10.1002/1521-3951(200201)229:2<673::AID-PSSB673>3.0.CO;2-7
  5. P. Mahadevan and A. Zunger, Phys. Rev. B: Condens. Matter Mater. Phys., 69, 115211 (2004). https://doi.org/10.1103/physrevb.69.115211
  6. X. Y. Cui, J. E. Medvedeva, B. Delley, A. J. Freeman and C. Stampfl, Phys. Rev. B: Condens. Matter Mater. Phys., 75, 155205 (2007). https://doi.org/10.1103/physrevb.75.155205
  7. S. J. Pearton, C. R. Abernathy, D. P. Norton, A. F. Hebard, Y. D. Park, L. A. Boatner and J. D. Budai, Mater. Sci. Eng. R, 40, 137 (2003). https://doi.org/10.1016/S0927-796X(02)00136-5
  8. S. Choi, G. -B. Cha, S.C. Hong, S. Cho, Y. Kim, J.B. Ketterson, S.-Y. Jeong and G.-C. Yi, Solid State Comm., 122, 165 (2002). https://doi.org/10.1016/S0038-1098(02)00094-7
  9. M. E. Overberg, G. T. Thaler, R. M. Frazier, C. R. Abernathy, S. J. Pearton, R. Rairigh, J. Kelly, N. A. Theodoropoulou, A. F. Hebard, R. G. Wilson and J. M. Zavada, J. Vac. Sci. Tech. B, 21, 2093 (2003). https://doi.org/10.1116/1.1609473
  10. M. E. Overberg, G. T. Thaler, R. M. Frazier, C. R. Abernathy, S. J. Parton, R. Rairigh, J. Kelly, N. A. Theodoropoulou, A. F. Hebard, R. G. Wilson and J. M. Zavada, J. Appl. Phys., 93, 7861 (2003). https://doi.org/10.1063/1.1556247
  11. S. J. Pearton, C. R. Abernathy, D. P. Norton, A. F. Hebard, Y. D. Park, L. A. Boatner and J. D. Budai, Mater. Sci. Eng. R, 40, 137 (2003). https://doi.org/10.1016/S0927-796X(02)00136-5
  12. O. K. Andersen, Phys. Rev. B: Condens. Matter Mater. Phys., 12, 3060 (1975). https://doi.org/10.1103/PhysRevB.12.3060
  13. S. Y. Savrasov, Phys. Rev. B: Condens. Matter Mater. Phys., 54, 16470 (1996). https://doi.org/10.1103/physrevb.54.16470
  14. O. K. Andersen and O. Jepsen, Phys. Rev. Lett., 53, 2571 (1984). https://doi.org/10.1103/PhysRevLett.53.2571
  15. P. Kruger, M. Taguchi and S. Meza-Aguilar, Phys. Rev. B: Condens. Matter Mater. Phys, 61, 15277 (2000) https://doi.org/10.1103/physrevb.61.15277
  16. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  17. C. Kittel, Introduction to Solid State Physics, 7th ed., p.20, John Wiley & Sons (1996).
  18. B.-S. Kang, K.-P. Chae and H.-K. Lee, Adv. Condensed Matt. Phys., 2015, 1 (2015).
  19. J. Okabayashi, A. Kimura, O. Rader, T. Mizokawa, A. Fujimori, T. Hayashi and M. Tanaka, Phys. Rev. B: Condens. Matter Mater. Phys., 58, R4211(1998). https://doi.org/10.1103/PhysRevB.58.R4211
  20. Bouzerar, G. T. Ziman and J. Kudrnovoky, Phys. Rev. B: Condens. Matter Mater. Phys., 72, 125207 (2005). https://doi.org/10.1103/physrevb.72.125207
  21. Burch, K. S., D. B. Shrekenhamer, E. J. Sinley, J. Stephens, B. L. Sheu, R. K. Kawakami, P. Schiffer, N. Samarth, D. D. Awschalom and D. N. Basov, Phys. Rev. Lett., 97, 87208 (2006). https://doi.org/10.1103/PhysRevLett.97.087208