DOI QR코드

DOI QR Code

Characteristic Evaluation of WC Hard Materials According to Ni Content Variation by a Pulsed Current Activated Sintering Process

펄스전류활성 소결 공정을 이용한 Ni 함량변화에 따른 WC 소재의 특성평가

  • Park, Hyun-Kuk (Korea Institute of Industrial Technology (KITECH), Smart Mobility Materials and Components R&D Group)
  • Received : 2020.10.19
  • Accepted : 2020.11.13
  • Published : 2020.12.27

Abstract

Expensive PCBN or ceramic cutting tools are used for the processing of difficult-to-cut materials such as Ti and Ni alloy materials. These tools have a problem of breaking easily due to their high hardness but low fracture toughness. To solve this problem, cutting tools that form various coating layers are used in low-cost WC-Co hard material tools, and researches on various tool materials are being conducted. In this study, WC-5, 10, and 15 wt%Ni hard materials for difficult-to-cut cutting materials are densified using horizontal ball milled WC-Ni powders and pulsed current activated sintering method (PCAS method). Each PCASed WC-Ni hard materials are almost completely dense, with a relative density of up to 99.7 ~ 99.9 %, after the simultaneous application of pressure of 60 MPa and electric current for 2 min; process involves almost no change in the grain size. The average grain sizes of WC and Ni for WC-5, 10, and 15 wt%Ni hard materials are about 1.09 ~ 1.29 and 0.31 ~ 0.51 µm, respectively. Vickers hardness and fracture toughness of WC-5, 10, and 15 wt%Ni hard materials are about 1,923 ~ 1,788 kg/mm2 and 13.2 ~ 14.3 MPa.m1/2, respectively. Microstructure and phase analyses of PCASed WC-Ni hard materials are performed.

Keywords

References

  1. J. H. Lee, I. H. Oh, J. H. Jang, S. K. Hong and H. K. Park, J. Alloys Compd., 786, 1 (2019). https://doi.org/10.1016/j.jallcom.2019.01.282
  2. J. H. Lee, H. K. Park, J. H. Jang and I. H. Oh, Met. Mater. Int., 25, 268 (2019). https://doi.org/10.1007/s12540-018-0165-9
  3. J. H. Kim, J. H. Lee, J. H. Jang, I. H. Oh, S. K. Hong and H. K. Park, Korean J. Met. Mater., 58, 533 (2020). https://doi.org/10.3365/KJMM.2020.58.8.533
  4. J. H. Kim, I. H. Oh, J. H. Lee, S. K. Hong and H. K. Park, J. Korean Powder Metall. Inst., 26, 1 (2019). https://doi.org/10.4150/KPMI.2019.26.1.1
  5. H. K. Park, J. H. Lee, J. H. Jang and I. H. Oh, J Korean J. Met. Mater., 57, 304 (2019). https://doi.org/10.3365/KJMM.2019.57.5.304
  6. H. C. Kim, Ph. D. Thesis (in Korean), p.15-79, Jeonbuk University, Jeonbuk (2005).
  7. H. C. Kim, I. J. Shon, I. K. Jung and I. Y. Ko, Met. Mater. Int., 12, 393 (2006). https://doi.org/10.1007/BF03027705
  8. J. Garcia, V. C. Cipres, A. Blomqvist and B. Kaplan, Int. J. Refract. Met. Hard Mater., 80, 40 (2019). https://doi.org/10.1016/j.ijrmhm.2018.12.004
  9. G. R. Anstis, P. Chantikul, B. R. Lawn and D. B. Marshall, J. Am. Ceram. Soc., 64, 533 (1981). https://doi.org/10.1111/j.1151-2916.1981.tb10320.x
  10. I. J. Shon, I. K. Jeong, I. Y. Ko, J. M. Doh and K. D. Woo, Ceram. Int., 35, 339 (2009). https://doi.org/10.1016/j.ceramint.2007.11.003
  11. E. A. Almond and B. Roebuck, Mater. Sci. Eng., A, 105-106, 237 (1988). https://doi.org/10.1016/0025-5416(88)90502-2