DOI QR코드

DOI QR Code

Effect of Temperature Conditions on Electrochemical Properties for Zinc-Air Batteries

온도조건에 따른 아연-공기 전지의 전기화학적 특성

  • Lee, Ju Kwang (Department of Advanced Materials & Chemical Engineering, College of Engineering, Halla University) ;
  • Jo, Yong Nam (Department of Advanced Materials & Chemical Engineering, College of Engineering, Halla University)
  • 이주광 (한라대학교 신소재화학공학과) ;
  • 조용남 (한라대학교 신소재화학공학과)
  • Received : 2020.11.05
  • Accepted : 2020.11.16
  • Published : 2020.12.27

Abstract

A zinc-air battery consists of a zinc anode, an air cathode, an electrolyte, and a separator. The active material of the positive electrode is oxygen contained in the ambient air. Therefore, zinc-air batteries have an open cell configuration. The external condition is one of the main factors for zinc-air batteries. One of the most important external conditions is temperature. To confirm the effect of temperature on the electrochemical properties of zinc-air batteries, we perform various analyses under different temperatures. Under 60 ℃ condition, the zinc-air cell shows an 84.98 % self-discharge rate. In addition, high corrosion rate and electrolyte evaporation rate are achieved at 60 ℃. Among the cells stored at various temperature conditions, the cell stored at 50 ℃ delivers the highest discharge capacity; it also shows the highest self-discharge rate (65.33 %). On the other hand, the cell stored at 30 ℃ shows only 2.28 % self-discharge rate.

Keywords

References

  1. H. J. Ko, Y. S. Lim and M. S. Kim, Korean J. Mater. Res., 25, 279 (2015). https://doi.org/10.3740/MRSK.2015.25.6.279
  2. Y. S. Park, J. W. Shin, B. I. Lee and S. K. Joo, Korean J. Mater. Res., 8, 323 (1998).
  3. M. A. Rahman, X. Wang and C. Wen, J. Electrochem. Soc., 160, A1759 (2013). https://doi.org/10.1149/2.062310jes
  4. D. Y. Lee, J .W. Lee, G. H. An, D, H, Riu and H. J. Ahn, Korean J. Mater. Res., 26, 258 (2016). https://doi.org/10.3740/MRSK.2016.26.5.258
  5. D. W. Park, J. W, Kim, J. K. Lee and J. Y. Lee, Appl. Chem. Eng., 23, 359 (2012).
  6. N. I. Kim, K. H. Park, Y. K. Choi and W. T. Lee, J. Ind. Eng. Chem., 10, 177 (1999).
  7. Y. N. Jo, K. Prasanna, S. H. Kang, P. R. Ilango, H. S. Kim, S. W. Eom and C. W. Lee, J. Ind. Eng. Chem., 53, 247-25 (2017). https://doi.org/10.1016/j.jiec.2017.04.032
  8. J. W. Han and Y. N. Jo, Korean J. Mater. Res., 29, 798 (2019). https://doi.org/10.3740/MRSK.2019.29.12.798
  9. V. Caramia and B. Bozzini, Mater. Renew. Sustain. Energ., 3, 28 (2014). https://doi.org/10.1007/s40243-014-0028-3
  10. V. K. Nartey, L. Binder and K. Kordesch, J. Power Sources, 52, 217 (1994). https://doi.org/10.1016/0378-7753(94)02010-8
  11. J. E. Park and Y. N. Jo, Korean J. Mater. Res., 29, 812 (2019). https://doi.org/10.3740/MRSK.2019.29.12.812
  12. A. R. Mainar, O. Leonet, M. Bengoechea, I. Boyano, I. Meatza, A. Kvasha, A. Guerfi and J. A. Blazquez, International J. Energy Res., 40, 1032 (2016). https://doi.org/10.1002/er.3499
  13. Y. N. Jo, S. H. Kang, K. Prasanna, S. W. Eom and C.W. Lee, Appl. Surf. Sci., 422, 406 (2017). https://doi.org/10.1016/j.apsusc.2017.06.033
  14. T. H. Eom, M. H. Shin, J. Lee, H. M. Kim and C. Y. Won, Proc. KIEE Annu. Conference, 137 (2016).
  15. H. Y. Shin, H. K. Choi, Y. K. Kim, Y. K. An, J. Y. Choi, C. G. Yoon, M. H. Lim, J. S. Kim and B. G. Seo, Proc. KIEE Annu. Conference, 356 (2009).
  16. J. H. Jo and W. T. Kim, J. Korean Soc. Mechanical Technol., 15, 247 (2013). https://doi.org/10.17958/ksmt.15.2.201304.247
  17. J. H. Park, Development of an Organic/Inorganic nanocomposite Separator for Lithium Ion Batteries using an irradiation, KAERI, CM-1271 (2009).