DOI QR코드

DOI QR Code

Enhanced Light Transmittance of Densely Packed Metal Nanoparticle Layers

밀집된 금속 나노 입자 레이어의 광학 특성

  • Jeon, Hyunji (Micro/Nano Structure Laboratory, Department of Mechanical Engineering, Hanbat National University) ;
  • Choi, Jinnil (Micro/Nano Structure Laboratory, Department of Mechanical Engineering, Hanbat National University)
  • 전현지 (한밭대학교 기계공학과 마이크로/나노 구조 실험실) ;
  • 최진일 (한밭대학교 기계공학과 마이크로/나노 구조 실험실)
  • Received : 2020.09.26
  • Accepted : 2020.11.22
  • Published : 2020.12.27

Abstract

Irradiation of the metal nanoparticles causes local plasmon resonance in a specific wavelength band, which can improve the absorption and scattering properties of a structure. Since noble metal nanoparticles have better resonance effects than those of other metals, it is easy to identify plasmonic reactions and this is advantageous to find the optical tendency. Compared to having a particle gap or randomly arranged particle structures, densely and evenly packed structures can exhibit more uniform optical properties. Using the uniform properties, the structure can be applied to optical filtering applications. Therefore, in this paper, validation tests about metal nanoparticles and thin film structures are conducted for more accurate analysis. The optical properties of monolayer and bilayer noble metal nanoparticle structures with different diameters, packed in a uniform array, are investigated and their optical trends are analyzed. In addition, a thin film structure under identical conditions as metal nanoparticle structure is evaluated to confirm the improved optical characteristics.

Keywords

References

  1. B. D. Fahlman, Materials Chemistry, p. 275-356, Springer, Dordrecht (2007).
  2. Y. Ju-Nam and J. Lead, Sci. Total Environ., 400, 396 (2008). https://doi.org/10.1016/j.scitotenv.2008.06.042
  3. D. Wang and Y. Li, Adv. Mater., 23, 1044 (2011). https://doi.org/10.1002/adma.201003695
  4. C. Wang, H. Yin, R. Chan, S. Peng, S. Dai and S. Sun, Chem. Mater., 21, 433 (2009). https://doi.org/10.1021/cm802753j
  5. H. Lee, S. E. Habas, G. A. Somorjai and P. Yang, J. Am. Chem. Soc., 130, 5406 (2008). https://doi.org/10.1021/ja800656y
  6. X. Huang, Y. Li, H. Zhou, X. Duan and Y. Huang, Nano Lett., 12, 4265 (2012). https://doi.org/10.1021/nl301931m
  7. S. Maier, Plasmonics: Fundamentals and Applications, p.65, Springer, New York (2007).
  8. S. Lal, S. Link and N. J. Halas, Nat. Photonics, 1, 641 (2007). https://doi.org/10.1038/nphoton.2007.223
  9. X. Wang, J. C. Yu, H. Y. Yip, L. Wu, P. K. Wong and S. Y. Lai, Chem. Eur. J., 11, 2997 (2005). https://doi.org/10.1002/chem.200401248
  10. X. B. Cao, L Gu, L. J. Zhuge, W. J. Gao, W. C. Wang and S. F. Wu, Adv. Funct. Mater., 16, 896 (2006). https://doi.org/10.1002/adfm.200500422
  11. J. Virkutyte and R. S. Varma, New J. Chem., 34, 1094 (2010). https://doi.org/10.1039/c0nj00268b
  12. Y. Oh, W. Lee and D. Kim, Opt. Lett., 36, 1353 (2011). https://doi.org/10.1364/OL.36.001353
  13. Y. Yanase, T. Hiragun, K. Ishii, T. Kawaguchi, T. Yanase, M. Kawai, K. Sakamoto and M. Hide, Sensors, 14, 4948 (2014). https://doi.org/10.3390/s140304948
  14. S. H. Wu, K. L. Lee, R. H. Weng, Z. X. Zheng, A. Chiou and P. K. Wei, PLos One, 9, e89522 (2014). https://doi.org/10.1371/journal.pone.0089522
  15. A. D. Pham and H. J. Ahn, Int. J. Precis. Eng. Manuf.-Green Tech., 5, 519 (2018). https://doi.org/10.1007/s40684-018-0058-x
  16. M. Ahamed and M. K. J. Siddiqui, Clin. Chim. Acta., 411, 1841 (2010). https://doi.org/10.1016/j.cca.2010.08.016
  17. D. Derkacs, S. H. Lim, P. Matheu, W. Mar and E. T. Yu, Appl. Phys. Lett., 89, 093103 (2006). https://doi.org/10.1063/1.2336629
  18. G. V. Naik, V. M. Shalaev and A. Boltasseva, Adv. Mater., 25, 3264 (2013). https://doi.org/10.1002/adma.201205076
  19. Y. Xia, X. Wu, J. Zhao, J. Zhao, Z. Li, W. Ren, Y. Tian, A. Li, Z. Shen and A. Wu, Nanoscale, 8, 18682 (2016). https://doi.org/10.1039/C6NR07172D
  20. S. Baek, J. Noh, C. H. Lee, B. S. Kim, M. K. Seo and J. Y. Lee, Sci. Rep., 3, 1726 (2013). https://doi.org/10.1038/srep01726
  21. R. Li, B. Q. Li and W. Wang, AIP Advances, 9, 085119 (2019). https://doi.org/10.1063/1.5116364
  22. K. W. Choi, D. Y. Kim, S. J. Ye and O. O. Park, Adv. Mater. Res., 3, 199 (2014). https://doi.org/10.12989/amr.2014.3.4.199
  23. G. C. Park, Y. M. Song, J. H. Ha and Y. T. Lee, J. Nanosci. Nanotechnol., 11, 6152 (2011). https://doi.org/10.1166/jnn.2011.4350
  24. A. N. Shipway, E. Katz and I. Willner, ChemPhysChem, 1, 18 (2000). https://doi.org/10.1002/1439-7641(20000804)1:1@@<@@18::aid-cphc18@@>@@3.0.co;2-l
  25. K. Bi, Y. Chen, Q. Wan, T. Ye, Q. Xiang, M. Zheng, X. Wang, Q. Liu, G. Zhang, Y. Li, Y. Liu and H. Duan, Nanoscale, 11, 1245 (2019). https://doi.org/10.1039/C8NR09254K
  26. D. M. Sullivan, Electromagnetic Simulation Using The FDTD Method, 2nd ed., p. 79, John Wiley & Sons, Wiley-IEEE Press, New Jersey (2000).
  27. T. Allen and S. C. Hagness, Computational Electromagnetics: The Finite-Difference Time-Domain Method, 3rd ed., p. 1151, MA: Artech House, Boston (2005).
  28. S. D. Gedney, Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics, p.39-74, C. A. Balanis, Morgan & Claypool Publishers, USA (2011).
  29. J. A. Stratton, Electromagnetic Theory, p. 1, McGrow-Hill, New York, (1941).
  30. K. Yee, IEEE Trans. Antenn. Propag., 14, 302 (1966). https://doi.org/10.1109/TAP.1966.1138693
  31. D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory and G. Mathian, Sol. Energy Mater. Sol. Cells, 93, 1377 (2009). https://doi.org/10.1016/j.solmat.2009.02.028
  32. H. Lee, I. Lee and H. Park, New Phys.: Sae Mulli (in Korean), 68, 781 (2018). https://doi.org/10.3938/npsm.68.781
  33. E. D. Palik, Handbook of Optical Constants of Solids, p. 3, H. B. Javanovich, Academic Press, Massachussetts (1998).
  34. P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters and E. T. Yu, Appl. Phys. Lett., 93, 113018 (2008).
  35. A. Hessel and A. A. Oliner, Appl. Optic., 4, 1275 (1965). https://doi.org/10.1364/AO.4.001275
  36. S. Feng, S. Darmawi, T. Henning, P. J. Klar and X. Zhang, Small, 8, 1937 (2012). https://doi.org/10.1002/smll.201102290