DOI QR코드

DOI QR Code

Evaluation of the Sterilization Effect of a Plasma Generator with a Flexible Electrode Structure on Staphylococcus aureus and Pseudomonas aeruginosa

황색포도알균과 녹농균에 대한 유연전극 구조를 갖는 플라즈마 발생기의 멸균효과 평가

  • Park, Chul (Department of Biomedical Laboratory Science, Gwangju Health University) ;
  • Lee, Hyeok Jae (Department of Biomedical Laboratory Science, Gwangju Health University)
  • 박철 (광주보건대학교 임상병리과) ;
  • 이혁재 (광주보건대학교 임상병리과)
  • Received : 2020.10.28
  • Accepted : 2020.11.25
  • Published : 2020.12.31

Abstract

In this study, the sterilization ability of S. aureus and P. aeruginosa was evaluated using a plasma generator with a flexible electrode structure. Both strains were prepared at a concentration of 1.5×106 CFU/mL and inoculated and spread evenly on two medium plates. The medium were kept at a distance of 3 cm and 9 cm from the plasma generator and were plasma discharged from 30 sec to 10 minutes. The growth of colonies on the media, were subsequently compared with the control group. The mean colonies of S. aureus formed at a 3 cm distance were 9.2×102 (log value 2.96) CFU/mL for the 5 min discharge period and 8.0×10 (1.90) CFU/mL for the 10 min discharge period. When the medium was exposed for 5 min and 10 min at a 9 cm distance, the mean colonies of S. aureus formed were 2.16×103 (3.33) and 2.4×102 (2.38) CFU/mL, respectively. The medium containing P. aeruginosa kept at a 3 cm distance and exposed to 3, 5, 10-minute discharge, did not form any colonies. When kept at a 9 cm distance for 3 minutes, 6.0×102 (2.78) CFU/mL mean colonies were formed but no colonies were formed at exposure periods of 5 and 10 minutes. This enhanced sterilization effect was confirmed in experiments of S. aureus and P. aeruginosa using TiO2.

본 연구에서 유연전극 구조의 플라즈마 발생기를 이용하여 S. aureus와 P. aeruginosa의 살균 능력을 평가하였다. 두 균주 모두 1.5×106 CFU/mL 농도의 부유액으로 조제하여 배지에도말 후, 플라즈마 발생기로부터 3 cm, 9 cm 떨어뜨려 15초 간격으로, 30초부터 120초까지 그리고 3분, 5분, 10분 동안 플라즈마를 방전하여 배지에 형성된 colony를 대조군과 비교 하였다. 3 cm 떨어뜨린 배지에서 형성된 S. aureus의 평균 집락은 5분 방전했을 때 9.2×102 (log 값 2.96) CFU/mL 이었고, 10분 방전했을 때는 8.0×10 (1.90) CFU/mL이 형성되었다. 9 cm 떨어뜨린 배지에 5분 또는 10분 동안 방전했을 때 형성된 S. aureus의 평균 집락은 각각 2.16×103 (3.33)과 2.4×102 (2.38) CFU/mL이 형성되었다. 3 cm 떨어뜨려 3분, 5분, 10분간 방전하였을 때 P. aeruginosa는 완전히 사멸되어 colony가 형성되지 않았다. 9 cm 떨어뜨려 3분 방전했을 때 P. aeruginosa는 6.0×102 (2.78) CFU/mL이 형성되었으나, 5분, 10분간 방전하였을 때는 완전히 사멸되어 colony가 형성되지 않았다. 또한 TiO2를 이용한 S. aureus와 P. aeruginosa 실험에서 더 나은 살균 효과를 확인할 수 있었다.

Keywords

References

  1. Ryu YH, Uhm HS, Park GS, Choi EH. Sterilization of Neurospora crassa by noncontacted low temperature atmospheric pressure surface discharged plasma with dielectric barrier structure. J Korean Vac Soc. 2013;22:55-65. https://doi.org/10.5757/JKVS.2013.22.2.55
  2. Gaunt LF, Beggs CB, Georghiou GE. Bactericidal action of the reactive species produced by gas-discharge nonthermal plasma at atmospheric pressure: a review. IEEE Transactions on Plasma Science. 2006;34:1257-1269. https://doi.org/10.1109/TPS.2006.878381
  3. von Woedtke TH, Reuter S, Masur K, Weltmann KD. Plasma for medicine. Phys Rep. 2013;530:291-320. https://doi.org/10.1016/j.physrep.2013.05.005
  4. Fridman G, Friedman G, Gutsol A, Shekhter AB, Vasilets VN, Fridman A. Applied plasma medicine. Plasma Process Polym. 2008;15:503-533. https://doi.org/10.1002/ppap.200700154
  5. Fridman G, Peddinghaus M, Ayan H, Fridman A, Balasubramanian M, Gutsol A, et al. Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air. Plasma Chem Plasma Process. 2006;26:425-442. https://doi.org/10.1009/PLASMA.2006.1707305
  6. Daeschlein G, Woedtke TV, Kindel E, Brandenburg R, Weltmann KD, Junger M. Antibacterial activity of an atmospheric pressure plasma jet against relevant wound pathogens in vitro on a simulated wound environment. Plasma Process Polym. 2010;7:224-230. https://doi.org/10.1002/ppap.200900059
  7. Fridman G, Shereshevsky A, Jost MM, Brooks AD, Fridman A, Gutsol A, et al. Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines. Plasma Chem Plasma Process. 2007;27:163-176. https://doi.org/10.1007/s11090-007-9048-4
  8. Steelman VM. Ethylene oxide. The importance of aeration. AORN J. 1992;55:773-775. https://doi.org/10.1016/s0001-2092(07)69447-2
  9. Laroussi M, Lu X. Room-temperature atmospheric pressure plasma plume for biomedical applications. Appl Phys Lett. 2005;87:113902. https://doi.org/10.1063/1.2045549
  10. Moisan M, Barbeau J, Crevier MC, Pelletier J, Philip N, Saoudi B. Plasma sterilization methods and mechanisms. Pure Appl Chem. 2002;74:349-358. https://doi.org/10.1351/pac200274030349
  11. Lee HJ, Song HJ, Song MJ. A study on the effect of microbial sterilization using plasma generator with a flexible electrodes sturcture. J Korean Inst Electr Electron Mater Eng. 2020;33:71-78. https://doi.org/10.4313/JKEM.2020.33.1.71
  12. Son HH, Lee WG. Discharge properties of torch-type atmospheric pressure plasma and its local disinfection of microorganism. Korean Chem Eng Res. 2011;49:835-839. https://doi.org/10.9713/KCER.2011.49.6.835
  13. Laroussi M, Leipold F. Evaluation of the roles of reactive species, heat and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. Int. J Mass Spectrom. 2004; 233:81-86. https://doi.org/10.1016/j.ijms.2003.11.016
  14. Bogaerts A, Neyts E, Gijbels R, Joost van der Mullen. Gas discharge plasmas and their application. Spectrochim Acta B. 2002;57:609-658. https://doi.org/10.1016/S0584-8547(01)00406-2
  15. Heinlin J, Morfill G, Landthaler M, Stolz W, Isbary G, Zimmermann JL, et al. Plasma medicine: possible application in dermatology. J Dtsch Dermatol Ges. 2010;8:968-976. https://doi.org/10.1111/j.1610-0387.2010.07495.x
  16. Takenaka K, Okumura Y, Setsuhara Y. Plasma interactions with organic materials in liquid through plasma/liquid interface. Jpn J Appl Phys. 2013;52:1-5. https://doi.org/10.7567/JJAP.52.11NE04
  17. Du CM, Shi TH, Sun YW, Zhuang XF. Decolorization of acid orange 7 solution by gas-liquid gliding arc discharge plasma, J Hazard Mater. 2008;154:1192-1197. https://doi.org/10.1016/j.jhazmat.2007.11.032
  18. Son HH, Lee WG. Treatment of Ar/O2 atmospheric pressure plasma for sterilization. Appl Chem Eng. 2011;22:261-265.
  19. Kwon YH, Park HM, Song HG, Park WZ. Ozone production characteristics of the DBD discharge the electrode shape at the same electrode surface area. J Korean Inst Illum Electr Install Eng. 2016;30:71-77. https://doi.org/10.5207/JIEIE.2016.30.2.071
  20. Falkenstein Z. Application of dielectric barrier discharges. Proceedings of the 12th International Conference on high-power particle beams. 1998:117-120. https://doi.org/10.1109/beams.1998.822399
  21. Ryu YH, Uhm HS, Park GS, Choi EH. Sterilization of neurospora crassa by noncontacted low temperature atmospheric pressure surface discharged plasma with dielectric barrier structure. J Vac Sci. 2013;22:55-65. https://dx.doi.org/10.5757/JKVS.2013.22.2.55
  22. Jo JO, Lee HW, Mok YS. Sterilization of scoria powder by corona discharge plasma. Appl Chem Eng. 2014;25:386-391. https://doi.org/10.14478/ace.2014.1046
  23. Lee SJ, Song YS, Park YR, Ryu SM, Jeon HW, Eom SH. Sterilization of food borne pathogenic bacteria by atmospheric pressure dielectric barrier discharge plasma. J Food Hyg Saf. 2017;32: 222-227. https://doi.org/10.13103/jfhs.2017.32.3.222
  24. Kim JE, Kim IH, Min SC. Microbial decontamination of vegetables and spices using cold plasma treatments. Korean J food Sci Technol. 2013;45:735-741. https://doi.org/10.9721/KJFST.2013.45.6.735
  25. Kim KY, Paik NW, Kim YH, Yoo KH. Bactericidal efficacy of non-thermal DBD plasma on Staphylococcus aureus and Escherichia coli. J Korean Soc Occup Environ Hyg. 2018;28:61-79. https://doi.org/10.15269/JKSOEH.2018.28.1.61
  26. Athanasekou CP, Moustakas NG, Morales-Torres S, PastranaMartinez LM, Figueiredo JL, Faria JL, et al. Ceramic photo-catalytic membranes for water filtration under UV and visible light. Appl Catal B: Environ. 2015;178:12-19. https://doi.org/10.1016/j.apcatb.2014.11.021
  27. Vautier M, Guillard C, Herrmann JM. Photocatalytic degradation of dyes in water: case study of indigo and of indigo carmine. J Catal. 2001;201:46-59. https://doi.org/10.1006/jcat.2001.3232
  28. Yoon YH, Nam SH, Joo JC, Ahn HS. Photocatalytic disinfection of indoor suspended microorganisms (Escherichia coli and Bacillus subtilis spore) with ultraviolet light. Journal of the Korea Academia-Industrial cooperation Society. 2014;15:1204-1210. https://dx.doi.org/10.5762/KAIS.2014.15.2.1204
  29. Kim TY, Na JH, Min BJ, Cho SY. A study on sterilization of Pseudomonas sp. using titanium dioxide photocatalyst. J Adv Eng and Tech. 2011;4:129-133. https://doi.org/10.5762/KAIS.2014.15.2.1204