DOI QR코드

DOI QR Code

Development of PCR based approach to detect potential mosaicism in porcine embryos

  • Cho, Jongki (Department of Animal and Poultry Sciences, Virginia Tech) ;
  • Uh, Kyungjun (Department of Animal and Poultry Sciences, Virginia Tech) ;
  • Ryu, Junghyun (Department of Animal and Poultry Sciences, Virginia Tech) ;
  • Fang, Xun (College of Veterinary Medicine, Chungnam National University) ;
  • Bang, Seonggyu (College of Veterinary Medicine, Chungnam National University) ;
  • Lee, Kiho (Department of Animal and Poultry Sciences, Virginia Tech)
  • Received : 2020.11.24
  • Accepted : 2020.12.11
  • Published : 2020.12.31

Abstract

Direct injection of genome editing tools such as CRISPR/Cas9 system into developing embryos has been widely used to generate genetically engineered pigs. The approach allows us to produce pigs carrying targeted modifications at high efficiency without having to apply somatic cell nuclear transfer. However, the targeted modifications during embryogenesis often result in mosaicism, which causes issues in phenotyping founder animals and establishing a group of pigs carrying intended modifications. This study was aimed to establish a genomic PCR and sequencing system of a single blastomere in the four-cell embryos to detect potential mosaicism. We performed genomic PCR in four individual blastomeres from four-cell embryos. We successfully amplified target genomic region from single blastomeres of 4-cell stage embryo by PCR. Sanger sequencing of the PCR amplicons obtained from the blastomeres suggested that PCR-based genotyping of single blastomere was a feasible method to determine mutation type generated by genome editing technology such as CRISPR/Cas9 in early stage embryos. In conclusion, we successfully genotyped single blastomeres in a single 4-cell stage embryo to detect potential mosaicism in porcine embryos. Our approach offers a simple platform that can be used to screen the prevalence of mosaicism from designed CRISPR/Cas9 systems.

Keywords

References

  1. Carter DB, Lai L, Park KW, Samuel M, Lattimer JC, Jordan KR, Estes DM, Besch-Williford C, Prather RS. 2002. Phenotyping of transgenic cloned piglets. Cloning Stem Cells 4:131-145. https://doi.org/10.1089/153623002320253319
  2. Cho B, Kim SJ, Lee EJ, Ahn SM, Lee JS, Ji DY, Lee K, Kang JT. 2018a. Generation of insulin-deficient piglets by disrupting INS gene using CRISPR/Cas9 system. Transgenic Res. 27:289-300. https://doi.org/10.1007/s11248-018-0074-1
  3. Cho B, Kim SJ, Lee EJ, Ahn SM, Lee JS, Ji DY, Lee SH, Kang JT. 2018b. Production of cloned pigs derived from double gene knockout cells using CRISPR/Cas9 system and MACs-based enrichment system. J. Emb. Trans. 33:245-254. https://doi.org/10.12750/JET.2018.33.4.245
  4. Choi K, Shim J, Ko N, Eom H, Kim J, Lee JW, Jin DI, Kim H. 2017. Production of heterozygous alpha 1,3-galactosyltransferase (GGTA1) knock-out transgenic miniature pigs expressing human CD39. Transgenic Res. 26:209-224. https://doi.org/10.1007/s11248-016-9996-7
  5. Choi KH and Lee CK. 2019. Pig pluripotent stem cells as a candidate for biomedical application. J. Anim. Reprod. Biotechnol. 34:139-147. https://doi.org/10.12750/JARB.34.3.139
  6. Dai Y, Vaught TD, Boone J, Chen SH, Phelps CJ, Ball S, Monahan JA, Jobst PM, McCreath KJ, Lamborn AE, Cowell-Lucero JL, Wells KD, Colman A, Polejaeva IA, Ayares DL. 2002. Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs. Nat. Biotechnol. 20:251-255. https://doi.org/10.1038/nbt0302-251
  7. Garcia-Tunon I, Vuelta E, Lozano L, Herrero M, Mendez L, Palomero-Hernandez J, Perez-Caro M, Perez-Garcia J, Gonzalez-Sarmiento R, Sanchez-Martin M. 2020. Establishment of a conditional Nomo1 mouse model by CRISPR/Cas9 technology. Mol. Biol. Rep. 47:1381-1391. https://doi.org/10.1007/s11033-019-05214-7
  8. Hauschild J, Petersen B, Santiago Y, Queisser AL, Carnwath JW, Lucas-Hahn A, Zhang L, Meng X, Gregory PD, Schwinzer R, Cost GJ, Niemann H. 2011. Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc. Natl. Acad. Sci. U. S. A. 108:12013-12017. https://doi.org/10.1073/pnas.1106422108
  9. Hirata M, Tanihara F, Wittayarat M, Hirano T, Nguyen NT, Le QA, Namula Z, Nii M, Otoi T. 2019. Genome mutation after introduction of the gene editing by electroporation of Cas9 protein (GEEP) system in matured oocytes and putative zygotes. In Vitro Cell. Dev. Biol. Anim. 55:237-242. https://doi.org/10.1007/s11626-019-00338-3
  10. Jeon R and Rho GJ. 2020. Porcine somatic cell nuclear transfer using telomerase reverse transcriptase-transfected mesenchymal stem cells reduces apoptosis induced by replicative senescence. J. Anim. Reprod. Biotechnol. 35:215-222. https://doi.org/10.12750/jarb.35.3.215
  11. Ji SJ, Lee G, Park SH, Kim KW, Byun SJ, Ock SA, Hwang S, Woo JS, Oh KB. 2017. Reproductive characteristic of transgenic Massachusetts General Hospital miniature pigs for Xenotransplantation. J. Emb. Trans. 32:165-170. https://doi.org/10.12750/JET.2017.32.3.165
  12. Lai L, Kolber-Simonds D, Park KW, Cheong HT, Greenstein JL, Im GS, Samuel M, Bonk A, Rieke A, Day BN, Murphy CN, Carter DB, Hawley RJ, Prather RS. 2002. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295:1089-1092. https://doi.org/10.1126/science.1068228
  13. Lee G, Park SH, Lee H, Ji SJ, Lee JY, Byun SJ, Hwang S, Kim KW, Ock SA, Oh KB. 2017. Development of α1,3-galactosyltransferase inactivated and human membrane cofactor protein expressing homozygous transgenic pigs for xenotransplantation. J. Emb. Trans. 32:73-79. https://doi.org/10.12750/JET.2017.32.3.73
  14. Lee GS, Kim HS, Lee SH, Kim DY, Seo KM, Hyun SH, Kang SK, Lee BC, Hwang WS. 2005. Successful surgical correction of anal atresia in a transgenic cloned piglet. J. Vet. Sci. 6:243-245. https://doi.org/10.4142/jvs.2005.6.3.243
  15. Lei S, Ryu J, Wen K, Twitchell E, Bui T, Ramesh A, Weiss M, Li G, Samuel H, Clark-Deener S, Jiang X, Lee K, Yuan L. 2016. Increased and prolonged human norovirus infection in RAG2/IL2RG deficient gnotobiotic pigs with severe combined immunodeficiency. Sci. Rep. 6:25222. https://doi.org/10.1038/srep25222
  16. Liu S, Liu X, Huang H, Liu Q, Su X, Zhu P, Li H, Cui K, Xie B, Shi D. 2016. Factors affecting efficiency of introducing foreign DNA and RNA into parthenogenetic or in vitro-fertilized porcine eggs by cytoplasmic microinjection. In Vitro Cell. Dev. Biol. Anim. 52:713-722. https://doi.org/10.1007/s11626-016-0025-1
  17. Lutz AJ, Li P, Estrada JL, Sidner RA, Chihara RK, Downey SM, Burlak C, Wang ZY, Reyes LM, Ivary B, Yin F, Blankenship RL, Paris LL, Tector AJ. 2013. Double knockout pigs deficient in N-glycolylneuraminic acid and galactose α-1,3-galactose reduce the humoral barrier to xenotransplantation. Xenotransplantation 20:27-35. https://doi.org/10.1111/xen.12019
  18. Ma T, Tao J, Yang M, He C, Tian X, Zhang X, Zhang J, Deng S, Feng J, Zhang Z, Wang J, Ji P, Song Y, He P, Han H, Fu J, Lian Z, Liu G. 2017. An AANAT/ASMT transgenic animal model constructed with CRISPR/Cas9 system serving as the mammary gland bioreactor to produce melatonin-enriched milk in sheep. J. Pineal Res. 63:e12406. https://doi.org/10.1111/jpi.12406
  19. Park KE, Kaucher AV, Powell A, Waqas MS, Sandmaier SE, Oatley MJ, Park CH, Tibary A, Donovan DM, Blomberg LA, Lillico SG, Whitelaw CB, Mileham A, Telugu BP, Oatley JM. 2017. Generation of germline ablated male pigs by CRISPR/Cas9 editing of the NANOS2 gene. Sci. Rep. 7:40176. https://doi.org/10.1038/srep40176
  20. Piedrahita JA, Mir B, Dindot S, Walker S. 2004. Somatic cell cloning: the ultimate form of nuclear reprogramming? J. Am. Soc. Nephrol. 15:1140-1144. https://doi.org/10.1097/01.ASN.0000110183.87476.05
  21. Ryu J and Lee K. 2017. CRISPR/Cas9-mediated gene targeting during embryogenesis in swine. Methods Mol. Biol. 1605:231-244. https://doi.org/10.1007/978-1-4939-6988-3_16
  22. Sander JD and Joung JK. 2014. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32:347-355. https://doi.org/10.1038/nbt.2842
  23. Sato M, Kosuke M, Koriyama M, Inada E, Saitoh I, Ohtsuka M, Nakamura S, Sakurai T, Watanabe S, Miyoshi K. 2018. Timing of CRISPR/Cas9-related mRNA microinjection after activation as an important factor affecting genome editing efficiency in porcine oocytes. Theriogenology 108:29-38. https://doi.org/10.1016/j.theriogenology.2017.11.030
  24. Su X, Chen W, Cai Q, Liang P, Chen Y, Cong P, Huang J. 2019. Production of non-mosaic genome edited porcine embryos by injection of CRISPR/Cas9 into germinal vesicle oocytes. J. Genet. Genomics 46:335-342. https://doi.org/10.1016/j.jgg.2019.07.002
  25. Tanihara F, Hirata M, Nguyen NT, LE QA, Hirano T, Otoi T. 2019. Effects of concentration of CRISPR/Cas9 components on genetic mosaicism in cytoplasmic microinjected porcine embryos. J. Reprod. Dev. 65:209-214. https://doi.org/10.1262/jrd.2018-116
  26. Tian H, Luo J, Zhang Z, Wu J, Zhang T, Busato S, Huang L, Song N, Bionaz M. 2018. CRISPR/Cas9-mediated stearoyl-CoA desaturase 1 (SCD1) deficiency affects fatty acid metabolism in goat mammary epithelial cells. J. Agric. Food Chem. 66:10041-10052. https://doi.org/10.1021/acs.jafc.8b03545
  27. Uh K, Ryu J, Farrell K, Wax N, Lee K. 2020. TET family regulates the embryonic pluripotency of porcine preimplantation embryos by maintaining the DNA methylation level of NANOG. Epigenetics 15:1228-1242. https://doi.org/10.1080/15592294.2020.1762392
  28. Yoshioka K, Suzuki C, Tanaka A, Anas IM, Iwamura S. 2002. Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol. Reprod. 66:112-119. https://doi.org/10.1095/biolreprod66.1.112