DOI QR코드

DOI QR Code

Changes in Bioluminescence of Omphalotus japonicus Mycelia under Environmental Stress Conditions

환경 스트레스 조건에 따른 화경버섯 균사의 생물발광 변화

  • Park, Mi-Jeong (Division of Special Forest Products, Department of Forest Bioresources, National Institute of Forest Science) ;
  • Lee, Hyorim (Division of Special Forest Products, Department of Forest Bioresources, National Institute of Forest Science) ;
  • Ryoo, Rhim (Division of Special Forest Products, Department of Forest Bioresources, National Institute of Forest Science)
  • 박미정 (국립산림과학원 산림생명자원연구부 산림소득자원연구과) ;
  • 이효림 (국립산림과학원 산림생명자원연구부 산림소득자원연구과) ;
  • 유림 (국립산림과학원 산림생명자원연구부 산림소득자원연구과)
  • Received : 2020.12.14
  • Accepted : 2020.12.21
  • Published : 2020.12.31

Abstract

Bioluminescence refers to the production and emission of light in living organisms. This phenomenon arises from luciferase-catalyzed oxidation reaction of luciferin. Bioluminescence is widely observed in marine vertebrates and invertebrates, as well as in some microorganisms and fungi. To date, approximately 80 species of fungi have been reported to be luminous. One such example is Omphalotus japonicus, which is a luminous fungus found in Korea. In this study, we examined the bioluminescence of Omphalotus japonicus mycelia. Light emission was detected at the edges of mycelia grown on solid agar medium. Notably, the intensity of bioluminescence was found to be significantly enhanced following wound induction. The increase in light intensity peaked at 3 h after mechanical damage. We also investigated the effects of extreme temperatures on bioluminescence. Unlike mechanical damage, high and low temperatures repressed the light emission from mycelia. Further investigations are required to reveal the physiological and ecological properties of fungal bioluminescent responses to environmental stresses.

생물발광은 생물체 내에서 빛이 방출되는 현상을 말한다. 이 현상은 루시페라아제(luciferase)에 촉매되는 루시페린(luciferin)의 산화 반응에 의해 나타난다. 생물발광은 균류를 포함하여 다양한 생물 종에서 나타남이 알려져 있다. 현재까지 약 80여 종의 균류에서 생물발광이 관찰됨이 보고 되었다. 화경버섯(Omphalotus japonicus)은 한국에 자생하는 대표적인 생물발광버섯이다. 본 연구에서는 화경버섯 균사의 생물발광에 대하여 조사하였다. 그 결과, 고체 배지에서 자란 화경버섯 균사체의 가장자리 부근에서 중심부에 비해 높은 발광이 관찰되었다. 또한 균사 표면에 상처를 내자 해당 부위에서 강한 생물발광이 관찰되었다. 이러한 생물발광의 증가는 처리 후 3시간에 최대로 나타났다. 다음으로 극단적인 온도 스트레스에 의한 생물 발광의 변화에 대해서도 살펴보았다. 그 결과, 외부 자극에 의한 상처 스트레스와 달리 고온이나 저온 스트레스에 의해 균사의 생물 발광이 억제됨을 확인하였다. 환경 스트레스에 의해 일어나는 생물발광 변화의 생리학적 및 생태학적 의미를 밝히기 위해 더 많은 연구가 필요할 것이다.

Keywords

Acknowledgement

This work was supported by the biological toxicity research grants (KNA 1-3-2, 19-5 and KNA 1-3-3, 20-3) from the National Institute of Forest Science provided by the Korea Forest.

References

  1. Wilson T, Hastings JW. Bioluminescence. Annu Rev Cell Dev Biol 1998;14:197-230. https://doi.org/10.1146/annurev.cellbio.14.1.197
  2. Labella AM, Arahal DR, Castro D, Lemos ML, Borrego JJ. Revisiting the genus Photobacterium: Taxonomy, ecology and pathogenesis. Int Microbiol 2017;20:1-10.
  3. Wainwright PC, Longo SJ. Functional innovations and the conquest of the oceans by Acanthomorph fishes. Curr Biol 2017;27:R550-7.
  4. Verdes A, Gruber DF. Glowing worms: Biological, chemical, and functional diversity of bioluminescent annelids. Integr Comp Biol 2017;57:18-32. https://doi.org/10.1093/icb/icx017
  5. Desjardin DE, Oliveira AG, Stevani CV. Fungi bioluminescence revisited. Photochem Photobiol Sci 2008;7:170-82. https://doi.org/10.1039/b713328f
  6. Medvedeva SE, Artemenko KS, Krivosheenko AA, Rusinova AG, Rodicheva EK, Puzyr AP, Bondar VS. Growth and light emission of luminous basidiomycetes cultivated on solid media and in submerged culture. Mycosphere 2014;5:565-77. https://doi.org/10.5943/mycosphere/5/4/9
  7. Oliveira AG, Desjardin DE, Perry BA, Stevani CV. Evidence that a single bioluminescent system is shared by all known bioluminescent fungal lineages. Photochem Photobiol Sci 2012;11:848-52. https://doi.org/10.1039/c2pp25032b
  8. Desjardin DE, Perry BA, Lodge DJ, Stevani CV, Nagasawa E. Luminescent Mycena: New and noteworthy species. Mycologia 2010;102:459. https://doi.org/10.3852/09-197
  9. Purtov KV, Petushkov VN, Baranov MS, Mineev KS, Rodionova NS, Kaskova ZM, Tsarkova AS, Petunin AI, Bondar VS, Rodicheva EK, et al. The chemical basis of fungal bioluminescence. Angew Chem Int Ed Engl 2015;54:8124-8. https://doi.org/10.1002/anie.201501779
  10. Oba Y, Suzuki Y, Martins GNR, Carvalho RP, Pereira TA, Waldenmaier HE, Kanie S, Naito M, Oliveira AG, Dorr FA, et al. Identification of hispidin as a bioluminescent active compound and its recycling biosynthesis in the luminous fungal fruiting body. Photochem Photobiol Sci 2017;16:1435-40. https://doi.org/10.1039/C7PP00216E
  11. Kaskova ZM, Dorr FA, Petushkov VN, Purtov KV, Tsarkova AS, Rodionova NS, Mineev KS, Guglya EB, Kotlobay A, Baleeva NS, et al. Mechanism and color modulation of fungal bioluminescence. Sci Adv 2017;3:e1602847. https://doi.org/10.1126/sciadv.1602847
  12. Kotlobay AA, Sarkisyan KS, Mokrushina YA, Marcet-Houben M, Serebrovskaya EO, Markina NM, Gonzalez Somermeyer L, Gorokhovatsky AY, Vvedensky A, Purtov KV, et al. Genetically encodable bioluminescent system from fungi. Proc Natl Acad Sci USA 2018;115:12728-32. https://doi.org/10.1073/pnas.1803615115
  13. Uto Y, Sasaki K, Takahashi M, Morimoto K, Inoue K. Application of high-speed countercurrent chromatography for the purification of high-purity Illudin S from Omphalotus japonicus. Anal Sci 2019;35:789-92. https://doi.org/10.2116/analsci.19P053
  14. Aoki S, Aboshi T, Shiono Y, Kimura KI, Murata T, Arai D, Iizuka Y, Murayama T. Constituents of the fruiting body of poisonous mushroom Omphalotus japonicus. Chem Pharm Bull (Tokyo) 2020;68:436-42. https://doi.org/10.1248/cpb.c19-01009
  15. Kelner MJ, McMorris TC, Beck WT, Zamora JM, Taetle R. Preclinical evaluation of illudins as anticancer agents. Cancer Res 1987;47:3186-9.
  16. Pietsch KE, van Midwoud PM, Villalta PW, Sturla SJ. Quantification of acylfulvene- and illudin S-DNA adducts in cells with variable bioactivation capacities. Chem Res Toxicol 2013;26:146-55. https://doi.org/10.1021/tx300430r
  17. Baekelandt M. Irofulven (MGI Pharma). Curr Opin Investig Drugs 2002;3:1517-26.
  18. Serova M, Calvo F, Lokiec F, Koeppel F, Poindessous V, Larsen AK, Laar ES, Waters SJ, Cvitkovic E, Raymond E. Characterizations of irofulven cytotoxicity in combination with cisplatin and oxaliplatin in human colon, breast, and ovarian cancer cells. Cancer Chemother Pharmacol 2006;57:491-9. https://doi.org/10.1007/s00280-005-0063-y
  19. Poindessous V, Koeppel F, Raymond E, Comisso M, Waters SJ, Larsen AK. Marked activity of irofulven toward human carcinoma cells: Comparison with cisplatin and ecteinascidin. Clin Cancer Res 2003;9:2817-25.
  20. Ka KH, Park H, Hur TC, Bak WC. Formation of fruiting body of Omphalotus japonicus by sawdust cultivation. Kor J Mycol 2010;38:80-2. https://doi.org/10.4489/KJM.2010.38.1.080
  21. Bermudes D, Petersen RH, Nealson KH. Low-level bioluminescence detected in Mycena haematopus basidiocarps. Mycologia 1992;84:799-802. https://doi.org/10.2307/3760392
  22. Weitz HJ, Ballard AL, Campbell CD, Killham K. The effect of culture conditions on the mycelial growth and luminescence of naturally bioluminescent fungi. FEMS Microbiol Lett 2001;202:165-70. https://doi.org/10.1016/S0378-1097(01)00282-8
  23. Jeon SM, Ka KH. Mycelium growth and extracellular enzyme activities of wood decaying mushroom strains on solid media. Kor J Mycol 2014;42:40-9. https://doi.org/10.4489/KJM.2014.42.1.40
  24. Prasad A, Sedlarova M, Balukova A, Rac M, Pospisil P. Reactive oxygen species as a response to wounding: In vivo imaging in Arabidopsis thaliana. Front Plant Sci 2020;10:1660. https://doi.org/10.3389/fpls.2019.01660
  25. Xie X, He Z, Chen N, Tang Z, Wang Q, Cai Y. The roles of environmental factors in regulation of oxidative stress in plant. Biomed Res Int 2019;2019:9732325. https://doi.org/10.1155/2019/9732325
  26. Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH. Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci USA 2004;101:1781-5. https://doi.org/10.1073/pnas.0308037100
  27. Oliveira AG, Stevani CV, Waldenmaier HE, Viviani V, Emerson JM, Loros JJ, Dunlap JC. Circadian control sheds light on fungal bioluminescence. Curr Biol 2015;25:964-8. https://doi.org/10.1016/j.cub.2015.02.021