DOI QR코드

DOI QR Code

Tanshinone I, an Active Ingredient of Salvia miltiorrhiza, Inhibits Differentiation of 3T3-L1 Preadipocytes and Lipid Accumulation in Zebrafish

  • Kwon, Hyo-Shin (Department of Molecular Medicine, College of Medicine, Keimyung University) ;
  • Jang, Byeong-Churl (Department of Molecular Medicine, College of Medicine, Keimyung University)
  • Received : 2020.12.08
  • Accepted : 2020.12.14
  • Published : 2020.12.30

Abstract

Objectives: Tanshinone I is a bioactive constituent in Salvia miltiorrhiza. At present, the anti-obesity effect and mechanism of tanshinone I are not fully understood. Here we investigated the effect of tanshinone I on lipid accumulation in 3T3-L1 preadipocytes and zebrafish. Methods: Lipid accumulation and triglyceride (TG) content in 3T3-L1 cells were determined by Oil Red O staining and AdipoRed assay, respectively. The expression and phosphorylation levels of adipogenic/lipogenic proteins in 3T3-L1 cells were evaluated by Western blotting. The messenger RNA (mRNA) expression levels of adipogenic/lipogenic markers and leptin in 3T3-L1 cells were measured by reverse transcription polymerase chain reaction (RT-PCR). Lipid accumulation in zebrafish was assessed by LipidGreen2 staining. Results: Tanshinone I at 5 μM largely blocked lipid accumulation and reduced TG content in differentiating 3T3-L1 cells. Furthermore, tanshinone I decreased the expression of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), acetyl CoA carboxylase (ACC), and perilipin A but also the phosphorylation of signal transducer and activator of transcription-3 (STAT-3) in differentiating 3T3-L1 cells. In addition, tanshinone I increased the phosphorylation of adenosine 3',5'-cyclic monophosphate (cAMP)-activated protein kinase (AMPK) while decreased the intracellular adenosine triphosphate (ATP) content with no change in the phosphorylation and expression of liver kinase-B1 in differentiating 3T3-L1 cells. Importantly, tanshinone I also reduced the extent of lipid deposit formation in developing zebrafish. Conclusions: These findings demonstrate that tanshinone I has strong anti-adipogenic effects on 3T3-L1 cells and reduces adiposity in zebrafish, and these anti-adipogenic effect in 3T3-L1 cells are mediated through control of C/EBP-α, PPAR-γ, STAT-3, FAS, ACC, perilipin A, and AMPK.

Keywords

Acknowledgement

The authors sincerely thank Mr. Anil Yadav Kumar for the arrangement and reading of the manuscript. We also deeply thank Drs. Bae MA and Hwang KS (Korea Research Institute of Chemical Technology) for technical help and advice.

References

  1. Kopelman PG. Obesity as a medical problem. Nature. 2000 ; 404(6778) : 635-43. https://doi.org/10.1038/35007508
  2. Abdelaal M, le Roux CW, Docherty, NG. Morbidity and mortality associated with obesity. Ann Transl Med. 2017 ; 5(7) : 161. https://doi.org/10.21037/atm.2017.03.107
  3. Ali AT, Hochfeld WE, Myburgh R, Pepper MS. Adipocyte and adipogenesis. Eur J Cell Biol. 2013 ; 92(6-7) : 229-36. https://doi.org/10.1016/j.ejcb.2013.06.001
  4. Ghaben AL, Scherer PE. Adipogenesis and metabolic health. Nat Rev Mol Cell Biol. 2019 ; 20(4) : 242-58. https://doi.org/10.1038/s41580-018-0093-z
  5. Onal G, Kutlu O, Gozuacik D, Dokmeci Emre S. Lipid droplets in health and disease. Lipids Health Dis. 2017 ; 16(1) : 128. https://doi.org/10.1186/s12944-017-0521-7
  6. Cao Z, Umek RM, McKnight SL. Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev. 1991 ; 5(9) : 1538-52. https://doi.org/10.1101/gad.5.9.1538
  7. Farmer SR. Transcriptional control of adipocyte formation. Cell Metab. 2006 ; 4(4) : 263-73. https://doi.org/10.1016/j.cmet.2006.07.001
  8. Lehrke M, Lazar MA. The many faces of PPARgamma. Cell. 2005 ; 123(6) : 993-9. https://doi.org/10.1016/j.cell.2005.11.026
  9. Lakshmanan MR, Nepokroeff CM, Porter JW. Control of the synthesis of fatty-acid synthetase in rat liver by insulin, glucagon, and adenosine 3' :5 cyclic monophosphate. Proc Natl Acad Sci USA. 1971 ; 69(12) : 3516-9. https://doi.org/10.1073/pnas.69.12.3516
  10. Montalto MB, Bensadoun A. Lipoprotein lipase synthesis and secretion: effects of concentration and type of fatty acids in adipocyte cell culture. J Lipid Res. 1993 ; 34(3) : 397-407. https://doi.org/10.1016/S0022-2275(20)40731-X
  11. Beller M, Bulankina AV, Hsiao HH, Urlaub H, Jackle H, Kuhnlein RP. PERILIPIN-dependent control of lipid droplet structure and fat storage in drosophila. Cell Metab. 2010 ; 12(5) : 521-32. https://doi.org/10.1016/j.cmet.2010.10.001
  12. Kern PA, Di Gregorio G, Lu T, Rassouli N, Ranganathan G. Perilipin expression in human adipose tissue is elevated with obesity. J Clin Endocrinol Metab. 2004 ; 89(3) : 1352-8. https://doi.org/10.1210/jc.2003-031388
  13. Wolins NE, Brasaemle DL, Bickel PE. A proposed model of fat packaging by exchangeable lipid droplet proteins. FEBS Lett. 2006 ; 580(23) : 5484-91. https://doi.org/10.1016/j.febslet.2006.08.040
  14. Duncan RE, Ahmadian M, Jaworski K, Sarkadi-Nagy E, Sul HS. Regulation of lipolysis in adipocytes. Annu Rev Nutr. 2007 ; 27 : 79-101. https://doi.org/10.1146/annurev.nutr.27.061406.093734
  15. Greenberg AS, Shen WJ, Muliro K, Patel S, Souza SC, Roth RA, et al. Stimulation of lipolysis and hormone-sensitive lipase via the extracellular signal-regulated kinase pathway. J Biol Chem. 2001 ; 276(48) : 45456-61. https://doi.org/10.1074/jbc.M104436200
  16. Tu Y. Artemisinin-A gift from traditional Chinese medicine to the world (nobel lecture). Angew Chem Int Ed Engl. 2016 ; 55(35) : 10210-26. https://doi.org/10.1002/anie.201601967
  17. Sevene E, Banda CG, Mukaka M, Maculuve S, Macuacua S, Vala A, et al. Efficacy and safety of dihydroartemisinin-piperaquine for treatment of Plasmodium falciparum uncomplicated malaria in adult patients on antiretroviral therapy in Malawi and Mozambique: an open label non-randomized interventional trial. Malar J. 2019 ; 18(1) : 277. https://doi.org/10.1186/s12936-019-2909-5
  18. Qu C, Ma J, Liu X, Xue Y, Zheng J, Liu L, et al. Dihydroartemisinin exerts anti-tumor activity by inducing mitochondrion and endoplasmic reticulum apoptosis and autophagic cell death in human glioblastoma cells. Front Cell Neurosci. 2017 ; 11 : 310.
  19. Liu X, Lu J, Lia o Y, Liu S, Chen Y, He R, et al. Dihydroartemisinin attenuates lipopolysaccharide-induced acute kidney injury by inhibiting inflammation and oxidative stress. Biomed Pharmacother. 2019 ; 117 : 109070. https://doi.org/10.1016/j.biopha.2019.109070
  20. Lu P, Zhang FC, Qian SW, Li X, Cui ZM, Dang YJ, et al. Artemisinin derivatives prevent obesity by inducing browning of WAT and enhancing BAT function. Cell Res. 2016 ; 26(10) : 1169-72. https://doi.org/10.1038/cr.2016.108
  21. Liu Y, Gao S, Zhu J, Zheng Y, Zhang H, Sun H. Dihydroartemisinin induces apoptosis and inhibits proliferation, migration, and invasion in epithelial ovarian cancer via inhibition of the hedgehog signaling pathway. Cancer Medicine. 2018 ; 7(11) : 5704-15. https://doi.org/10.1002/cam4.1827
  22. Jang BC. Artesunate inhibits adipogeneis in 3T3-L1 preadipocytes by reducing the expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3. Biochem Biophys Res Commun. 2016 ; 474(1) : 220-5. https://doi.org/10.1016/j.bbrc.2016.04.109
  23. Zalatan F, Krause JA, Blask DE. Inhibition of isoproterenol-induced lipolysis in rat inguinal adipocytes in vitro by physiological melatonin via a receptor-mediated mechanism. Endocrinology. 2001 ; 142(9) : 3783-90. https://doi.org/10.1210/en.142.9.3783
  24. Rosen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS, et al. PPARγ is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell. 1999 ; 4(4) : 611-7. https://doi.org/10.1016/S1097-2765(00)80211-7
  25. Linhart HG, Ishimura-Oka K, DeMayo F, Kibe T, Repka D, Poindexter B, et al. C/EBPα is required for differentiation of white, but not brown, adipose tissue. Proc Natl Acad Sci USA. 2001 ; 98(22) : 12532-7. https://doi.org/10.1073/pnas.211416898
  26. Stephens JM, Morrison RF, Pilch PF. The expression and regulation of STATs during 3T3-L1 adipocyte differentiation. J Biol Chem. 1996 ; 271(18) : 10441-4. https://doi.org/10.1074/jbc.271.18.10441
  27. Rosen ED, Hsu CH, Wang X, Sakai S, Freeman MW, Gonzalez FJ, et al. C/EBPα induces adipogenesis through PPARγ: A unified pathway. Genes Dev. 2002 ; 16(1) : 22-6. https://doi.org/10.1101/gad.948702
  28. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004 ; 89(6) : 2548-56. https://doi.org/10.1210/jc.2004-0395
  29. Ahima RS. Adipose tissue as an endocrine organ. Obesity (Silver Spring). 2006 ; 14 Suppl 5 : 242S-9S. https://doi.org/10.1038/oby.2006.317
  30. Hwang CS, Loftus TM, Mandrup S, Lane MD. Adipocyte differentiation and leptin expression. Annu Rev Cell Dev Biol. 1997 ; 13 : 231-59. https://doi.org/10.1146/annurev.cellbio.13.1.231
  31. Bastard JP, Maachi M, Lagathu C, Kim MJ, Caron M, Vidal H, et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw. 2006 ; 17(1) : 4-12.
  32. Ceddia RB, Somwar R, Maida A, Fang X, Bikopoulos G, Sweeney G. Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia. 2005 ; 48(1) : 132-9. https://doi.org/10.1007/s00125-004-1609-y
  33. Shehzad A, Iqbal W, Shehzad O, Lee YS. Adiponectin: regulation of its production and its role in human diseases. Hormones (Athens). 2012 ; 11(1) : 8-20. https://doi.org/10.1007/BF03401534
  34. Yadav A, Kataria MA, Saini V, Yadav A. Role of leptin and adiponectin in insulin resistance. Clin Chim Acta Int J Clin Chem. 2013 ; 417 : 80-4. https://doi.org/10.1016/j.cca.2012.12.007
  35. Jung DY, Kim JH, Jung MH. Anti-obesity effects of tanshinone I from Salvia miltiorrhiza bunge in mice fed a high-fat diet through inhibition of early adipogenesis. Nutrients. 2020 ; 12(5) : 1242. https://doi.org/10.3390/nu12051242
  36. Friedman J. Fat in all the wrong places. Nature. 2002 ; 415(6869) : 268-9. https://doi.org/10.1038/415268a
  37. Miyoshi H, Souza SC, Zhang HH, Strissel KJ, Christoffolete MA, Kovsan J, et al. Perilipin promotes hormone-sensitive lipase mediated adipocyte lipolysis via phosphorylation-dependent and -independent mechanisms. J Biol Chem. 2006 ; 281(23) : 15837-44. https://doi.org/10.1074/jbc.M601097200
  38. Wolins NE, Brasaemle DL, Bickel PE, A proposed model of fat packaging by exchangeable lipid droplet proteins. FEBS lett. 2006 ; 580 : 5484-91. https://doi.org/10.1016/j.febslet.2006.08.040
  39. Vingtdeux V, Chandakkar P, Zhao H, Davies P, Marambaud P. Small-molecule activators of AMP-activated protein kinase (AMPK), RSVA314 and RSVA405, inhibit adipogenesis. Mol Med. 2011 ; 17 : 1022-30. https://doi.org/10.2119/molmed.2011.00163
  40. Baek JH, Kim NJ, Song JK, Chun KH. Kahweol inhibits lipid accumulation and induces glucose-uptake through activation of AMP-activated protein kinase (AMPK). BMB Rep. 2017 ; 50 : 566-71. https://doi.org/10.5483/BMBRep.2017.50.11.031
  41. Winder WW, Wilson HA, Hardie DG, Rasmussen BB, Hutber CA, Call GB, et al. Phosphorylation of rat muscle acetyl-CoA carboxylase by AMP-activated protein kinase and protein kinase A. J Appl Phys. 1997 ; 82 : 219-25. https://doi.org/10.1063/1.365801
  42. Yun SM, Jung JH, Jeong SJ, Sohn EJ, Kim B, Kim SH. Tanshinone IIA induces autophagic cell death via activation of AMPK and ERK and inhibition of mTOR and p70 S6K in KBM-5 leukemia cells. Phytother Res. 2014 ; 28 : 458-64. https://doi.org/10.1002/ptr.5015
  43. Hwang SL, Yang JH, Jeong YT, Kim YD, Li X, Lu Y, et al. Tanshinone IIA improves endoplasmic reticulum stress-induced insulin resistance through AMP-activated protein kinase. Biochem Biophys Res Commun. 2013 ; 430 : 1246-52. https://doi.org/10.1016/j.bbrc.2012.12.066