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Abstract 
 

In the practical communication environment, the accurate channel state information (CSI) is 
difficult to obtain, which will cause the mismatch of resource and degrade the system 
performance. In this paper, to account for the channel uncertainties, a robust power allocation 
scheme for a downlink Non-orthogonal multiple access (NOMA) heterogeneous network 
(HetNet) is designed to maximize energy efficiency (EE), which can ensure the quality of 
service (QoS) of users. We conduct the robust optimization model based on worse-case 
method, in which the channel gains belong to certain ellipsoid sets. To solve the non-convex 
non-liner optimization , we transform the optimization problem via Dinkelbach method and 
sequential convex programming, and the power allocation of small cell users (SCUs) is 
achieved by Lagrange dual approach. Finally, we analysis the convergence performance of 
proposed scheme. The simulation results demonstrate that the proposed algorithm can 
improve total EE of SCUs, and has a fast convergence performance. 
 
 
Keywords: Non-orthogonal multiple access technology, heterogeneous networks, energy 
efficiency, channel state information, robust power allocation, Dinkelbach method, sequential 
convex programming, Lagrange dual approach 
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1. Introduction 

Nowadays, with the explosive growth of traffic demand, such as the popularity of mobile 
terminal devices, communication networks are facing enormous challenges in improving 
system capacity [1]. The shortage of spectrum resource is also receiving more and more 
attention. The data analysis shows that the demand for traffic data volume is expected to be 
500-1000 times higher than that in 2010 [2]. Facing to these problems, HetNets and NOMA 
technology are proposed to improve the spectral efficiency, respectively. In HetNets, it 
consists of macro base stations (MBSs) and multiple small base stations (SBSs), where SBSs 
include picocell BSs and femtocells BSs [3-5]. NOMA technology has a lower complexity at 
receiver and allows multiple users to share the same subcarrier on the power domain to 
improve the spectral efficiency, so it is considered as a key candidate for future access 
technology [6].  

Resource allocation plays a very significant role in both HetNets and NOMA system. In [7], 
the joint power allocation and user scheduling is investigated for a NOMA system based on 
EE, in which the imperfect CSI is considered. The power allocation problem is studied in [2] 
for NOMA system, where the difference of convex programing is applied as a suboptimal 
algorithm. The optimal power allocation based on max-min rate proportional fairness and 
max-sum rate is found in [8]. In [6], power allocation and sub-channel assignment are 
considered in NOMA system, which are solved by geometric programing and matching 
algorithm, respectively. In [9], the power allocation is discussed for HetNets, in which the 
difference of two convex functions programing are performed to obtain the 
Karush-Kuhn-Tucker solution. A lower bound problem and a parameterized transformation 
are introduced to achieve the energy efficient power allocation in OFDMA HetNets [10]. In 
full-duplex OFDMA system, the power allocation, user pairing, subchannel allocation are 
achieved as a three-sided matching problem via a novel matching algorithm.Considering the 
application of NOMA technology in HetNets, the convex relaxation technology is adopted to 
allocate the power for a downlink NOMA HetNets [11]. In [12], the sequential convex 
programing is discussed to obtain the close-form solution of powers in NOMA HetNets 
aiming to improve the sum rate of small cells. Also, a distributed power allocation scheme is 
discussed, where NOMA technology is applied at MBS and SBSs, its goal is to maximize the 
total throughput of system [13]. In [14], Xu et al. investigate resource allocation scheme for an 
energy-cooperation enabled two-tier NOMA HetNet. 

Based on the above research, most of the literatures are carried out under the assumption 
that the CSI is perfect. However, in the actual communication environment, due to the 
estimation bias of the channel, delay feedback, random fluctuation and quantization error, it 
will cause the uncertainty of parameters in the system [15-17]. Therefore, in communication 
systems, robust algorithm with partial CSI and imperfect CSI are gradually receiving more and 
more attention [18]. In [19], time-varying nature of wireless links and the dynamics of random 
are captured under the consideration of channel uncertainty. Resource allocation problem is 
investigated under bounded channel uncertainty for a downlink OFDMA HetNet, in which 
each cellular network only deploys one user, while the cross-tier interference between MBS 
and SCUs with the uncertainty links is ignored [20]. In [21], Xu et al discuss a robust power 
allcation scheme for cognitive radio networks. Robust power control is also investigated, 
where the dual decomposition theory is adopted to solve robust power control problem in a 
distributed manner [22]. In [23], the imperfect CSI condition is introduced for downlink 
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NOMA HetNets, where power alloctions for small cell and SCUs are achieved. The rest of the 
paper is organized as follows. Section 2 shows the NOMA HetNet system model and section 3 
transforms the optimization problem by bounding the uncertainty of channel in ellipsoid 
uncertainty sets. In section 4, the sub-optimal power allocation algorithm is designed to 
achieve the power allocation for SCUs. The numerical results are shown in Section 5. And 
Section 6 conclude this paper. 

MBS

small cell

MCU

communication link
interference link

 
Fig. 1. NOMA HetNet System Model  

2. System Model  

2.1 System Model  
Fig. 1 shows the system model for a downlink NOMA HetNet. It consists of a two-tier network, 
in which the upper layer represents the macro cell, and the lower layer represents the small cell. 
There are a MBS and J macro cell users (MCUs) randomly distributed in the macro cell. The set 
of MCUs is defined as { }= 1,2,...,j J∀ ∈ . On the lower layer, there are M small cells and K 
SCUs which are randomly deployed within the coverage of the corresponding SBSs, here 

{ }= 1,2,...,m M∀ ∈ and { }= 1,2,...,k K∀ ∈  denote the set of small cells and the set of 
small cell users, respectively. The NOMA technology is applied to this HetNet. Under this 
underlay spectrum sharing mode, SCUs are allowed to access the spectrum owned by MCUs. 
The system bandwidth is denoted by W. The thk  SCU in the mth small cell is represented 
as ,m kSCU . The received signals of ,m kSCU are expressed as 

'

' ' ' ' ' '
' ' ' ' '

, , , , , , , ,, , , ,
11, 1, 1

K M K J
m

m k m k m k m k m k m k m k j j m km k m k m k m k
jk k k m m k k

y h p s h p s g p s f p s ξ
== ≠ = ≠ =

= + + +∑ ∑ ∑ ∑ +   (1) 

where the received signals of ,m kSCU consist of the desired signal, the intra-tier interference 
from the other  NOMA users, the co-tier interference from other small cells, the cross-tier 
interference from macro cell and the additive white Gaussian noise (AWGN). ,m kh ,

'

,
m
m kh and 

,m kf are the channel coefficients of ,m kSCU from the thm SBS, 'thm SBS and MBS, 
respectively. ,m kp , ',m k

p and jp represent transmission powers of ,m kSCU , ',m k
SCU and the thj  
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MCU, severally. ,m ks , ',m k
s and js are the transmission symbols from corresponding BS to its 

serving users, respectively, ,m kξ is AWGN with zero mean and varianceδ . 
In NOMA system, SIC technology is applied to SCUs. As illustrated in [14], it is assumed that 

the order of the channel to inter-cell interference plus noise ratios (CINRs) is in descending order. 
Based on this order, the users can decode the signal from the other NOMA users in the same 
small cell with smaller CINR value. The received signal-to-interference-plus-noise (SINR) 
of ,m kSCU is written as 

'

' ' '
' ' ' ' '

, ,
, 1

, , ,, ,
11, 1,m 1

m k m k
m k k M K J

m
m k m k m k jm k m k

jk k k m m k

h p

h p g p f p
γ

δ
−

== ≠ = ≠ =

=
+ + +∑ ∑ ∑ ∑

                        (2) 

According to Shannon formula, the sum rate of SCUs is expressed as  

, 2 ,
1 1 1 1

( ) log (1 )
M K M K

m k m k
m k m k

R r W γ
= = = =

= = +∑∑ ∑∑P                                    (3) 

where we denote M KR ×∈P as the collection of optimization variable ,m kp  

2.2 Optimization Problem Formulation 
The purpose of this paper is to optimize the EE of all SCUs, which is defined as the trade of sum 
rate of SCUs and total power assumption. The optimization problem is written as 

2 ,
1 1
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                       (4) 

where totalE is the total EE of SCUs. cP is additional circuit power assumption. thrI is the total 
interference threshold from SBS to MCUs. minR denotes the minimum data rate of 
SCUs. maxP represents the maximum transmission power of SBS. C1 and C2 ensure the QoS of 
MCUs and SCUs, respectively. C3 guarantees the maximum power constraint of SBSs. C4 
makes sure that the power of SCU is non-negative. 

3. Robust optimization model 
However, in practical communication systems, random interference and channel estimation 
error will bring different uncertainties, which will result in certain deviations in the system 
parameters. This paper mainly focus on the uncertainty of channel gain due to the channel 
estimated deviation to construct the channel model. Based on robust optimization theory, the 
ellipsoid uncertainty set is often used in previous papers [19], [21]-[22] to approximate an 
uncertainly region. 
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3.1 Uncertainty Sets 
Based on the robust optimization theory, the channel uncertainty from SBS to MCUs in C1 of 
(4) is defined as the following bounded ellipsoid uncertainty set fR : 

2 2
, , , , ,

1
| : ( ) ( )

M

f m j m j m j m j m j j
m

R f f f f f ε
=

 
= ∆ = + ∆ ∆ ≤ 
 

∑                                (5) 

Considering the channel estimated error, the transformed SINR of ,m kSCU is shown as  

'

' ' '
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where the normalized channel gains can be defined as, respectively 
'
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,

,

m
m km

m k
m k

g
G

h
= ,  ,

,
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The channel uncertainty of '
,

m
m kG is defined as the following bounded ellipsoid uncertainty 

set GR : 

' ' ' '
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And the channel uncertainty set FR of ,m kF can be also expressed as  

( ){ }2 2
, , , , , ,| : ( )F m j m k m k m k m k m kR F F F F F δ= ∆ = + ∆ ∆ ≤                              (9) 

3.2 Transformation of Optimization Problem  
The above channel uncertainty parameters are subject to an infinite constraint on the uncertainty 
set. Cauchy-Schwarz inequality and worst-case approach in [24] will be introduced to transform 
optimization problem. According to (5), define the interference parameters of constraint C1 in 
(4) as follows 
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According to (10), the constraint C1 in (4) will be represented as  

, ,
1 1

( )
M K
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≤ + ≤∑∑                                              (11) 
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Based on the bounded ellipsoid uncertainty set (8), the interference parameters in objective 
function of (4) can be transformed as 

' ' '
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Based on the bounded ellipsoid uncertainty set (9), the another interference parameter in 
optimization function of (4) can be shown as 
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Because the noiseδ is very small relative to channel parameters ,m kh , the influence of channel 
estimated error ,m kh∆ onδ can be ignored. The normalizedδ can be transformed as  

'
,

, , , ,
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                                          (14) 

Furthermore, the SINR for ,m kSCU can be reformulated as  
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where 
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Above all, the novel optimization problem will be reformulated as follows: 
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The optimization problem (17) with respect to ,m kp is no-convex and NP hard. Therefore, we 
could not obtain the optimal power in a polynomial time. Considering the complexity of 
calculating, a reasonable sub-optimal power allocation algorithm is essential, which will be 
introduced in next section. 

4. Robust Power Allocation Under Channel Uncertainty 
The optimization function in (17) as a nonlinear fractional form is transformed to a linear form 
via sequential convex programming and Dinkelbach method. Then, the Lagrangian dual 
approach is adopted to derive the close-form solution of powers for SCUs. 
 
4.1 Transformation of the Optimization Problem 
The sequential convex programming approach [25] will be introduced at first. The data rate 
for ,k nSCU can be represented as via the lower bound of inequality  

* *
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Then, the Dinkelbach method [26] is proposed to further transform the fractional objective 
function in (17) to a tractable non-fractional form. The novel optimization problem is written as 
follows: 
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where the parameter t is introduced to measure the weight of sum rate of SCUs and total power 
assumption. The definition of the novel function is given as  

*
,0 1 1

( ) max{ ( ) ( )}
M K

c m k
m k

F t R t P p
= =

= − ⋅ +∑∑P
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                                       (20) 

The solution of function (19) is equivalent to find the maximum EE to make the nonlinear 
equation ( ) 0F t = . The detailed iterative sub-optimal power allocation scheme is illustrated in 
Algorithm 1. 

 
Algorithm 1: Robust power allocation algorithm based on energy efficiency 
1: Initialization: the power allocated equally to each SCU, input energy 

efficiency t. 
2: Initialization: the iteration index l, corresponding maximum number of 

iterations maxL , convergence threshold thrg . 

3: while maxl L≤ or 1 * 1
,

1 1
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4:      Solve the power allocation vector P according to (17). 
5:      Update vector , ,[ , ]l l l

k n j nα α=α and , ,[ , ]l l
k n j nβ β=β . 

6:     Update Lagrange multipliers l
mλ

lµ and ,
l
m kϕ according to (29), (30) and 

(31); 

7:      Set 1

,
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=
+∑∑

P and 1l l= +  

8: end while 
9: Output * M KR ×∈P . 

 
4.2 The Close-Form of Power for SCUs 
After the transformation of optimization problem, it can be further solved by solving its 
Lagrange dual problem. The Lagrangian function corresponding to optimization problem (19) is 
expressed as 
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where mλ , µ and ,m kϕ are non-negative Lagrange multipliers. The defined dual function will be 
shown as follows: 

max ( , , , )
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                                            (22) 

Furthermore, the dual problem of (20) can be written as 
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min ( , , )

. . , 0,

g
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Considering the complexity of calculation, it is assumed that there are two SCUs in the same 
small cell. The proposed algorithm is still applicable to the scenario where multiple SCUs are 
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deployed in a small cell. The problem can be solved by finding the optimal , , ,µP λ φ . Based on 
the KKT conditions, the close-form of powers for SCUs can be derived as  

2
,2 ,1 ,2 ,1 ,2 ,1 ,2 ,1 ,2 ,1 ,1

,1
,1

( ) ( ) 4
2

m m m m m m m m m m m
m

m

B C A D B C A D A C D
p

D
− − + − − − + + +

=
−

    (24) 

where  
,2 ,2

,2

(1 )
ln 2
m m

mB
ϕ α+

=                                                        (25) 

,1 ,1
,1

(1 )
ln 2

m m
mC

ϕ α+
=                                                          (26) 

,1 ,1,( )m j mm jD f tµ ε λ= + + +                                                  (27) 
And the power of the other SCU in the mth small cell can be derived as  
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Based on (24) and (28), the allocated power can be known in advance, and Since the fact that 
objective function of dual problem is differentiable, the Lagrange multipliers mλ , µ and ,m kϕ can 
be obtained by the gradient descent method, respectively 
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where l denotes the iteration index, and 1

lδ , 2
lδ , 3

lδ are the positive step sizes, respectively. It is 
known that the gradient descent method can ensure the iteration converges to the optimal 
Lagrange multipliers in terms of some sufficiently small step-size.  
4.3 The Convergence Performance Proof of Algorithm 1 
In here, we will prove the proposed algorithm 1 is convergent according to [7]. First, we can 
know that ( )F t in (20) is a monotonically decreasing function about t . The detailed certification 
process can be illustrated as follows: 
Proof: we can assume that (1)P and (2)P are the optimally allocated power for (1)( )F t and (2)( )F t , 
separately. We can obtain that  
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Because (1) * (1) * (1) (1) (1)
, ,0 1 1 1 1

( ) max{ ( ) ( )} ( ) ( ) 0
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= = = =

= − ⋅ + ≥ − ⋅ + =∑∑ ∑∑P
P P



, it 

can be obtained that (1)( ) 0F t ≥ . Then, we will give the convergence performance proof of 
proposed algorithm. The EE t increases with the growth of the number of iterations. It is 
assumed that the optimal EE is *t and the corresponding power is *P . We denote the achieved 
power allocation scheme in the thl iteration is ( )P l , and the corresponding EE in the 

thl iteration and the ( 1) thl + iteration is not optimal. According to (20), we can find 

that ( )( ) 0lF t > and ( 1)( ) 0lF t + > . And because
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Because ( )
,

1 1
0

M K
l

c m k
m k

P p
= =

+ >∑∑ is always satisfied, ( )( )lF t will be equal to zero and we will find 

the optimal EE when the number of iteration is large enough. 

5. Simulation Results 
The output performance of SCUs can be shown in this section. In the simulations, SCUs and 
MCUs are deployed at random within the SBSs and MBSs, respectively. The radius of macro 
cell and small cell are 250m and 30m, respectively and the transmission power of MBS and 
maximum transmission power constraints maxP of SBSs are 40dBm and 30dBm, severally. The 
total system bandwidth is 1MHz and the noise power density is -174dBm/Hz. Path-loss 
exponent is 3.76 and user minimum data rate is assumed as 0.6 bps/Hz. Meanwhile, the upper 
boundary of uncertainty, jε , is equal to 0.05. 

5.1 The Relationship between EE Performance of SCUs and maxP  
Fig. 2 displays the EE of SCUs versus the maximum transmission power of SBS maxP with 
different power schemes which include the proposed robust power allocation algorithm 
(PRPAA) in NOMA and OFDMA system, and the equal power allocation scheme in NOMA 
system, whereη =0.05 andδ =0.05. From Fig. 2, we note that the EE performance of SCUs of 
PRPAA in NOMA and OFDMA systems increases with the increasing of maxP , while the 
output performance of PRPAA in NOMA is obviously greater than that in OFDMA. 
Meanwhile, the EE of equal power allocation in NOMA scheme is worst in the three schemes. 
The reason is that when the power is greater than 23dbm, the gain of the rate is less than the 
increase of the power consumption, and the overall EE become smaller, which leads to the 
performance decrease. From that, we can prove the validity of the proposed algorithm. 
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Fig. 2. the EE of SCUs versus the maxP with  different algorithms  

5.2. The Convergence Performance of Proposed Algorithm 
The convergence rate of PRPAA is investigated versus different number of small cells shown in 
Fig. 3. In the convergence rate, the upper boundary values of uncertainty parameters η  and δ  
are set to be 0.05 and 0.05, respectively. It can be seen that the EE with the small cells is stable 
after six times iteration, which demonstrates the proposed algorithm has a fast convergence rate. 
Furthermore, from Fig. 3, we can know that a higher EE can be achieved when more small cells 
exist. For example, as the number of small cells M is equal to 11, the EE performance is 7.31% 
higher than that with 8M = , and is 18.01% superior to that with 5M = . The results also indicate 
that the convergence rate of the proposed algorithm has little correlation with the number of 
small cells. However, the number of small cells is 5, 8 or 11, the proposed algorithm can achieve 
good convergence performance after the fifth iteration.  
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Fig. 3. the convergence performance of the proposed algorithm 

5.3 The Relationship between EE performance and Upper Bound of Channel 
Uncertainties 
Fig. 4 displays the EE performance of different algorithms versus the upper boundary of the 
uncertainty parameter δ . The different algorithms include the PRPAA and the power 
allocation with exact estimation of channel state information (PAECSI) in NOMA system and 
traditional OFDMA system, respectively. From Fig. 4, we note that the EE performance of 
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PRPAA decreases with the increasing of the parameterδ , but EE performance of the proposed 
algorithm is close to that of the PAECSI in the same system. This is mainly because δ  is 
considered in our algorithm and is dealt with the worst-case performance optimization. In 
addition, the PRPAA-NOMA scheme can obtain a higher EE performance than 
PRPAA-OFDMA scheme when the value of the parameter δ  is the same. 
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Fig. 4. the EE of SCUs versus the upper boundary of uncertainty δ with different algorithms  

The output performance of PRPAA with different δ  for NOMA HetNets versus the upper 
boundary of the uncertainty parameter η  is shown in Fig. 5. The EE performance tends to 
decrease with the increasing of the parameter η . As expected, a better EE performance can be 
achieved whenδ is small. In other words, the output performance downgrades with a bigger η  
and δ . For example, at η =0.05, the EE performance withδ =0.01 is 10.87% larger than that 
withδ =0.05, and is 23.61% larger than that withδ =0.1.The reason is that the interference 
increases with the increasing of the parameters δ  and η , which leads to the decrease of the 
EE performance. This indicates that the EE performance is better when the estimated value is 
closer to the actual value under imperfect CSI.  
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Fig. 5. the EE of SCUs versus the upper boundary of uncertainty with different δ   
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5.4 The Relationship between EE performance and the Number of Small Cells  
Fig. 6 compares the EE performance of different algorithms versus the number of small cells 
M at η = 0.05 and δ =0.05. The difference algorithms involve the proposed PRPAA and the 
equal power allocation scheme in NOMA system and OFDMA system, respectively. In Fig. 6, 
it is shown that the equal power allocation algorithm may provide worse performance whether 
NOMA system or OFDMA system than PRPAA. From Fig. 6, We can also see that the EE 
performance of PRPAA increases with the growth of M, while the EE performance of equal 
power allocation algorithm decreases with the growth of M. The reason is that the inter-cell 
interference gets serious and the transmission power of each user-stream needs to be large 
enough to offset against the inter-cell interference, which leads to have a great negative impact 
on the transmission of NOMA HetNets. Furthermore, a better output performance can be 
achieved in NOMA system compared with OFDMA system with the same number of small 
cells. 
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Fig. 6. the EE of SCUs versus the numbers of small cells with different algorithms  

1 2 3 4 5 6 7 8 9 10 11

number of small cells

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

To
ta

l E
ne

rg
y 

Ef
fic

ie
nc

y 
of

 S
C

U
s(

M
bi

t/J
)

PRPAA-Pc=28dBm

PRPAA-Pc=29dBm

PRPAA-Pc=30dBm

 
Fig. 7. impact of on total EE for different numbers of small cells 

Fig. 7 shows the relationship between EE performance of the proposed PRPAA with the 
different power assumption cP and the number of small cells M. It can be seen that the proposed 
algorithm can improve the EE performance with the increasing of the number of small cells, 
and the increasing trend of EE performance becomes smaller as M gets larger. This can be 
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attributed to the fact that the in-tier interference is bigger when more small cells exist, so the 
EE performance cannot increase obviously when the number of users increases. Meanwhile 
the EE performance of the proposed algorithm degrades as the cP  increases. For example, the 
EE with dBm28cP = is 13.29% superior to that with dBm29cP = , and is 28.84% larger than 
that with dBm30cP =  as the number of small cells is six. 

6. Conclusion 
In this paper, a power allocation scheme for a downlink NOMA HetNet is proposed with the 
imperfect CSI. The optimization problem is formulated based on EE under the consideration 
of QoS of MCUs and SCUs. Then, we transform the optimization problem to a robust 
optimization problem in terms of the channel gains uncertainty based on robust optimization 
theory and worst-case approach. The non-convex power allocation problem is solved through 
Dinkelbach method, sequential convex programming and the close-form of powers for SCUs 
are obtained via Lagrange dual approach. The output EE performance of the proposed scheme 
is better than that of traditional schemes and have a fast convergence performance. 
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