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Abstract 

We propose a rapid adaptive learning framework for streaming object detection, called EER-

ASSL. The method combines the expected error reduction (EER) dependent rollback learning 

and the active semi-supervised learning (ASSL) for a rapid adaptive CNN detector. Most CNN 

object detectors are built on the assumption of static data distribution. However, images are 

often noisy and biased, and the data distribution is imbalanced in a real world environment. 

The proposed method consists of collaborative sampling and EER-ASSL. The EER-ASSL 

utilizes the active learning (AL) and rollback based semi-supervised learning (SSL). The AL 

allows us to select more informative and representative samples measuring uncertainty and 

diversity. The SSL divides the selected streaming image samples into the bins and each bin 

repeatedly transfers the discriminative knowledge of the EER and CNN models to the next bin 

until convergence and incorporation with the EER rollback learning algorithm is achieved. 

The EER models provide a rapid short-term myopic adaptation and the CNN models an 

incremental long-term performance improvement. EER-ASSL can overcome noisy and biased 

labels in varying data distribution. Extensive experiments shows that EER-ASSL obtained 

70.9 mAP compared to state-of-the-art technology such as Faster RCNN, SSD300, and 

YOLOv2. 
 

 

Keywords: Object Detection, Active Learning, Semi-Supervised Learning, Convolutional 

Neural Network 
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1. Introduction 

Recently, there have been remarkable advancements in artificial intelligence and machine 

learning. Pattern classification technologies [1-3], the tasks of extracting patterns, and making 

predictions based on the knowledge learned from the patterns [4, 5], are still challenging 

problems, especially in a complicated and changing real world  environment. Object detecting 

is one the important sub domain of computer vision. Last few years, deep learning technology 

has been applied successfully in many computer vision areas since the breakthrough by 

Krischesky et al. in 2012 [6, 7]. Most of the performance improvements rely on the availability 

of large, correctly labeled datasets on the assumption of a simple static data distribution [8]. 

However, the underlying distributions in the real world is very often varied and imbalanced, 

and the rebuilding of the system requires difficult and time-consuming labor and effort. 

Furthermore, some collected samples tend to be biased or badly labeled and may lead to 

performance degradation. A fully labeled retraining is infeasible in practice due to the cost and 

time constraints, but the acquisition of unlabeled data is relatively inexpensive. It can be of 

great practical value if one can make full use of both the labeled and unlabeled data.  

The semi-supervised learning (SSL) which enables unlabeled data to be used in conjunction 

with the labeled data, can improve a lot in a learning performance [4, 9, 10]. The active 

learning (AL) can be thought of as a special case of semi-supervised learning. The AL uses 

minimum queries to the oracle to obtain labels of unknown data to optimize the model 

performance. In the AL process, an experienced expert intuition is critical in most cases for a 

successful model convergence. Human labeling always requires a heavy cost since it is labor 

intensive, time consuming, and error-prone. Thus, how to utilize ordinary human effort 

effectively is one of the major concerns in the AL research. The advantage of AL is to explore 

unlabeled samples considering the potentials of each unlabeled sample [11]. AL employs 

selective sampling for exploring the most informative samples with the minimum labeling cost 

[8, 12-16], instead of relying on the labeled data in a passive manner. The labeling efforts of 

training data in AL is reduced a lot when it is compared with traditional supervised learning 

methods. When an unlabeled data sample is labeled, it is used in forward learning manipulation, 

but may lead to model performance degradation in the presence of noisy samples or labels. 

The noises from mislabeled samples or outliers effect negatively in the building of the 

generalization ability. It can also have a negative impact in [4], the authors focus on reliable 

label estimation and enhancement to improve learning performance. Recently, bi-directional 

active learning (BDAL) was proposed for the improvement of the model generalization 

capability. BADAL combines the forward and backward learning processes based on the EER 

based uncertainty formulation and achieved superior performance to the unidirectional efforts 

[16]. However, BDAL still requires the time consuming redo in data selection and undo in 

data labeling, and cannot be used in a changing streaming data circumstance, whereby a rapid 

adaptive learning functionality is necessary. Motion information in weakly labeled video can 

be used to learn high precision object proposals. Krishna et al. shows that integrating candidate 

object recognition with weakly supervised learning improves detection performance [17]. The 

deep neural networks such as CNN are one of the most powerful layered learning networks 

that provide generalization capability and have done so over three decades [6, 7]. However, 

the slow convergence of the deep neural network is still a very hard issue and is a critical 

obstacle, especially in a real time data stream [18]. Combining AL and SSL, called ASSL can 

efficiently improve the object detection performance under varying data distribution [18-21]  

to overcome the limitations of CNN approaches that require large scale labeled datasets and a 

long training time. Recently, the incremental ASSL approach has been proposed in [22] and 
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shows that it can handle a time varying problem efficiently owing to the knowledge transfer 

capability of CNN and incremental learning. However, the combined method of the AL and 

SSL still requires long CNN deep learning steps, which spend a non-trivial amount of training 

time to satisfy the rapid adaptive learning capability. This paper proposes a rapid adaptive 

learning framework for object detection, EER-ASSL that combines EER learning and the deep 

learning SSL algorithms. Similarly, to the BDAL [4], if suspicious data samples are inspected 

from the labeled dataset, the rollback learning is conducted to rebuild the model by reselection 

or a relabeling mechanism (see Fig. 1(b)). In the rollback bin-based SSL, the selected batch 

samples are divided into several bins, and each bin repeatedly transfers the discriminative 

knowledge of the CNN deep learning and the EER-based rollback learning for rapid adaptation. 

The rollback learning method is embedded in the bin-based SSL to eliminate rapidly the effects 

of noisy uncertain samples in an imbalanced distribution. The above process is repeated until 

convergence is achieved. The novelties of the proposed EER-ASSL are given in the following. 

 

 

Fig. 1.  The information flow snap shots of the bin-based SSL using (a) only forward deep learning, 

and (b) the EER rollback learning which consists of the forward reselection, rollback removal, and 

rollback relabeling, combined with the forward deep learning 

 

1) The ERR-ASSL provides a rapid adaptive learning framework for efficient object 

detection in a changing environment. The method does not rely on the assumption of a static 

data distribution implicitly adopted by most state-of-the-art detection technologies. It 

combines the EER rollback learning and the CNN deep learning to transfer dynamic 

discriminative knowledge of the models from the current bin to the next one until convergence. 

Thus, EER-ASSL can overcome noisy and biased labels in an unknown data distribution. One 

can notice that the EER model enables a rapid short-term adaptation, and the CNN model helps 

to provide incremental long-term performance improvement. 

2) The rollback learning method using the EER effectively leverages the discriminative 

capability by removing outliers or relabeling mislabeled samples. It provides a rapid adaptive 

learning functionality, while the unidirectional labeling and bi-directional approaches [4, 23] 

require a time-consuming redo in data selection and undo in a learning process. The EER based 

ASSL effectively utilizes the myopic adaptive learning capability of the EER and overcomes 

the drawback of the long training time of the deep learning object detector. 
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3) The proposed method is compared with state-of-the-art detection methods, such as Faster 

RCNN [5], SSD300 and YOLOv2, using the Pascal VOC 2007, 2012, MS COCO benchmark 

dataset and the local dataset. We significantly reduced the number of errors and improve the 

false object detection rate. 

In the remaining section of this paper, we briefly discuss the latest related work in Section 

2, and describe system overview in detail in Section 3. We mention the details of EER-ASSL 

algorithm in section 4.  We show our results in Section 5, and outline our conclusion in Section 

6. 

2. Related Work 

2.1 Active Semi-Supervised Learning (ASSL) 

In many cases, we expect the labeled dataset is given and fixed. However, that is not always 

the case. It is possible for the labeled dataset to change if we employ an expert oracle or 

algorithm label and employ active learning (AL). AL has the ability to eliminate noisy data 

and correctly label more data types. AL plays a key role when we have to label a lesser amount 

of data and the algorithm has the ability to decide when to label and when not to label it.  Zhu 

et al. (2003) first introduced the idea of effective combination of Semi-Supervised Learning 

(SSL) and Active Learning (AL) [23]. He applied the Gaussian random field model with AL 

so that unlabeled data can minimize the risk of the harmonic energy minimization function. 

By using pool-based active learning or selective sampling it is possible to minimize the number 

of query selections. AL and SSL combined together can improve the classification 

performance by exploiting both labeled and unlabeled data.  Similar research has been 

conducted by Tong and Koller et al. (2000) where they reduce the version space size for SVM 

[25]. Cohn et al. (1996) minimize the estimated generalization error by the reduction of  the 

variance components [26]. Once the queries are selected, most of these active learning methods 

do not take the chance of exploiting large amount of unlabeled data. Some of the researchers 

applied semi-supervised learning during the training phase. Chaloner and Verdinelli (1995) 

applied the Bayesian approach [27]. The Gaussian random field works well with harmonic 

function due to the combination of SSL and AL. There are many benefits to ASSL because 

ASSL can efficiently estimate a querying point and then randomly select a sample with 

ambiguity and still estimate the expected generalization error. Better label selection criteria 

can remove the ambiguity and the imbalances of sample distribution and overcome the 

imperfect labeling and selection biases while training an object detector [20, 24].  

2.2 Expected error reduction (EER)  

EER reduces the generalization error as a selection criterion when labeling a new sample based 

on retaining-based active learning. The effectiveness of the method has been proven in text 

classification applications [28], and the works in [16, 29, 30]. The rationale is to select the 

sample that is minimizing the future generalization error. The unlabeled pool is a 

representative of the test distribution and used as a validation set. Since no knowledge is 

available about the labels of unlabeled samples, EER estimates the average-case potential loss 

in terms of the average case in [28, 29, 31], worst-case in [32], or even the best-case criteria 

in [28]. EER explores the change of an expected error model by selecting the sample leading 

to the maximum change of the current model. A similar approach can be found in the variance 

reduction method, which tries to minimize the output variances. After adopting variance and 

logistic regression, it is extended to the expected variance reduction method on logistic 
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regression in [16]. In the mini-max view active learning, the worst-case criterion is adapted to 

select the sample which minimizes the objective function after labeling a new sample. This 

method is extended by considering all the unlabeled data when calculating the objective 

function. However, the EER-based retraining approaches require heavy computation since all 

the unlabeled data and all the possible labels are explored [16]. 

 

Fig. 2.  EER-ASSL architecture 

3. System Overview 

The proposed method consists of collaborative sampling and EER-ASSL. The proposed EER-

ASSL incorporates the rapid modeling capability from the EER method [4, 16] and the precise 

and incremental learning capability of CNN [21]. The method takes advantage of the 

exploration capability of the AL algorithm [34] and the step-by-step exploitation of the bin-

based SSL algorithm with the rollback functionality. The method minimizes not only the 

training time but also costly human efforts, and at the same time keeps a high-quality labeled 

dataset and high-accurate object detector in an adaptive learning process [33]. The 

collaborative sampling method considering the uncertainty, diversity, and confidence criteria 

can select more informative and reliable samples with low redundancy. Since the uncertainty 

criterion may cause the selection of noisy or redundant samples, the diversity criterion is 

applied in the clustering based redundant removal algorithm [21]. In this paper, the 

collaborative sampling-based AL learning algorithm incorporates with the rollback bin-based 

SSL algorithm. 

The brief sketch of the EER-ASSL for rapid adaptive object detection in a dynamically 

changing environment is given in Fig. 2. A batch of samples is selected based on uncertainty 

and diversity sampling from an image stream, instead of a single image at a time. After the 

collaborative sampling, the sampled batch stream is divided into bins for the rollback SSL 

algorithm. The samples in an image bin are unlabeled samples and pseudo-labeled by the bin-

based SSL using both the CNN detector and EER-based rollback learning method. However, 

the pseudo dataset includes not only incorrectly labeled samples but also biased labels under 

imbalanced data distribution. The noisy samples should be excluded from the confident 

samples since such samples do harmful effect and never create any contribution to building a 

better object detector. The proposed EER-based learning method is adopted for the rapid 
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forward and rollback learning for more informative sampling and learning by the act of 

reselection and relabeling. 

4. EER-ASSL Learning 

We use a very limited number of labeled data for training the EER model and the fine-tuned 

CNN model. The fine-tuned CNN model and EER model are built using the limited labeled 

data samples. The ensemble network consists of the CNN detector and EER model conduct 

object detection. The incremental ASSL is adopted, whereby a batch of data samples are 

collected from an input data stream, and selectively sampled by the collaborative sampling 

algorithm [21]. The selected samples are partitioned into the bins, where the size of the batch 

and bin are decided in accordance with the image capturing quality. The initially labeled 

dataset and the pseudo training dataset by the CNN and EER ensemble are used for training a 

new CNN and EER models, i.e., used to update the models for the next bin cycle. The new 

EER model is involved in the rollback learning process which is consisting of the removal, 

relabeling, and reselecting samples from the bin, if necessary. The bin-based incremental 

learning is processed incorporation with the forward learning for the sample reselection, and 

the rollback learning for the removal and relabeling (see Fig. 3). The new CNN model is also 

used in the process of the new collaborative sampling. The process is repeated until 

convergence. 
 

4.1 EER forward learning process 

We adopt the expected error reduction (EER) method which was proposed and employed in 

pattern classification problems [4, 16, 28, 29]. The objective of the EER method is to choose 

a sample that minimizes a generalization error in the future step. Since the testing data is not 

available in advance, a portion of the streaming data set is used as the validation dataset to 

estimate the future error. The true labels of the unlabeled dataset are not known, and the future 

errors are approximately estimated using the expected log-loss over the unlabeled data [16]. 

Let 𝑳𝑫 = {(𝒙𝒊, 𝒚𝒊)}𝒊=𝟏
𝒎  denote a labeled training dataset, and 𝑼𝑫 = {𝒙𝒊}𝒊=𝒎+𝟏

𝒏  is an unlabeled 

data set, where m ≪ 𝒏 . If a selected sample x is labeled y, and added to LD, it is denoted by 

𝑳𝑫+ = 𝑳𝑫⋃(𝒙, 𝒚). Let 𝒈𝑳𝑫 denote the EER model from 𝑳𝑫  and 𝒈𝑳𝑫+ from  𝑳𝑫+. The most 

informative data sample is assumed to maximize the expected error reduction by minimizing 

the expected entropy using the unlabeled dataset. Following to [16], we describe the most 

informative data sample in the unlabeled dataset is selected one that satisfies the following 

equation: 

𝒙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥∈𝑈𝐿 ∑ 𝑃(𝑦|𝒙; 𝑔𝐿𝐷) ×

𝑦∈𝐶

 

(− ∑ 𝑃(𝑦′|𝒙′; 𝑔𝐿𝐷+)𝑙𝑜𝑔(𝑦′, 𝒙′, 𝑔𝐿𝐷+)𝑥′∈𝑈𝐿,𝑦′∈𝐶 ),                        (1) 

 
where 𝑪 indicates the object classes, the first term 𝑷(𝒚|𝒙; 𝒈𝑳𝑫) denotes the label information 

of the current model, and the second term is the sum of the expected entropy on the unlabeled 

data UD with the model 𝒈𝑳𝑫+. Eq. (1) formulates the serial mode learning process, whereas a 

new model is updated immediately after the labeling of each new data sample in UD. But, the 

exhaustive repetition of the learning is challenged by heavy computational overhead in 

practice. In this paper, we divide the unlabeled stream dataset into batches, and each batch is 

divided into bins, instead of handling whole unlabeled data samples in UD as shown in Fig. 3. 
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In the rollback SSL, a bin of unlabeled data samples is used for each training step. For the 

time step i, Eq. (1) is rewritten considering bin 𝑩𝒊 as follows: 

𝑥𝐵𝑖

∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥∈𝐵𝑖
∑ 𝑃(𝑦|𝑥; 𝑔𝐿𝐷) ×

𝑦∈𝐶

 

(− ∑ 𝑃(𝑦′|𝑥′; 𝑔𝐿𝐷+)𝑙𝑜𝑔(𝑦′, 𝑥′, 𝑔𝐿𝐷+)𝑥′∈𝐵𝑖,𝑦′∈𝐶 )                               (2) 

 

where the first term denotes the label information of the current model, and the second term is 

the sum of the expected entropy on the unlabeled data bin 𝑩𝒊 with the model 𝒈𝑳𝑫+ . After 

applying the collaborative sampling, we can determine the pseudo labeled set 𝜟𝒊 = {𝒙𝟏, … , 𝒙𝒌} 

for the bin dataset repeatedly applying Eq. (2). However, it still requires a heavy computation 

overhead to build the model for each data sample in 𝑩𝒊. Thus, Eq. (2) is approximated by 

building the model for the selected samples of the pseudo labeled set 𝜟𝒊 as follows: 
 

𝛥𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛{𝒙1,… ,𝒙𝑘}∈𝐵𝑖
∑ 𝑃(𝑦|𝒙; 𝑔𝐿𝐷)

𝒙𝑖∈𝐵𝑖,𝑦∈𝐶

 

× (− ∑ 𝑃(𝑦′|𝒙′; 𝑔𝐿𝐷+𝛥𝑖 )𝑙𝑜𝑔(𝑦′, 𝒙′, 𝑔𝐿𝐷+𝛥𝑖 )𝒙′∈𝐵𝑖,𝑦′∈𝐶 ),                             (3) 

 

where the first term denotes the label information of the current model for the selected samples 

of the pseudo labeled set 𝜟𝒊 , and the second term is the sum of the expected entropy on the 

unlabeled data 𝑩𝒊 with the weight model 𝒈𝑳𝑫+𝜟𝒕 . If a selected sample {𝒙𝟏, … , 𝒙𝒌} with labeled 

{𝒚𝟏, … , 𝒚𝒌}, and added to LD, denoted by 𝑳𝑫+𝜟𝒕 = 𝑳𝑫⋃{(𝒙𝟏, 𝒚𝟏) … , (𝒙𝒌, 𝒚𝒌)}. One can notice 

that we build the model once, instead of building models for whole unlabeled data sample 

using Eq. (1). The EER forward learning process is used for the reselection algorithm of 𝜟𝒊 for 

retraining of the bin which is failed by the CNN detector. The reselected samples added to the 

current labeled dataset, and the combined dataset is used to retain the CNN model for the bin-

based SSL step.  

4.2 EER rollback learning process 

The objective is to investigate the most uncertain labeled samples that disturb the current 

model, and select new samples replacing the most uncertain samples or relabeling the recently 

pseudo labeled samples. We employ the EER estimation for the rollback learning to minimize 

the expected entropy over pseudo labeled data samples. Considering the computation time, we 

don’t consider the whole unlabeled dataset but only inspect the most recent pseudo labeled 

dataset. In the rollback process, we find the candidate samples of removal or relabeling from 

the recently pseudo labeled sample(s). The rollback learning process conducts the certification 

of the label(s) of the rollback sample(s) by relabeling it or reselecting from its neighborhood. 

The rollback learning is divided into two types: 1) the removal process and 2) the relabeling 

process. 

Removal process: The removal rollback process is to undo the bad effect of the data sample 

by removing it from the current pseudo dataset added to the labeled dataset since the rollback 

sample(s) are suspected to disturb the EER model. The model using the previously labeled 

dataset is used to update the model since it is expected more reliable than the last labeled 

dataset. During the removal of rollback learning, the influence of the rollback samples is 

removed from the pseudo dataset of the model. The removal rollback process discards the 

unreliable samples from the pseudo labeled dataset, and the unreliable samples are detected. 

The rollback removal process is formulated as follows: 
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𝒙† = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥∈𝐿𝐷 ∑ 𝑃 (𝑦|𝒙; 𝑔𝐿𝐷\(𝒙,𝑦†))𝑦∈𝐶 ×                                 (4) 

 

(− ∑ 𝑃 (𝑦′|𝒙′; 𝑔𝐿𝐷\(𝑥,𝑦†)) log (𝑦′, 𝒙′, 𝑔𝐿𝐷\(𝑥,𝑦†))𝒙′∈𝑈𝐿,𝑦′∈𝐶 ),                        (5) 

 

where 𝑳𝑫\(𝒙, 𝒚†) denotes the labeled dataset after removing (𝒙, 𝒚†). Since Eq. (4) requires a 

heavy computation time not computable in practice, rollback samples, 𝑹∆
𝒓𝒆𝒎𝒐𝒗 are chosen from 

the pseudo labeled data samples of the current step, instead of those from the whole unlabeled 

dataset. The training dataset rolls back from 𝑳𝑫 to 𝑳𝑫\𝑹∆
𝒓𝒆𝒎𝒐𝒗, and replace them new samples 

from the neighbors in the current feature space. We are looking for a pool of labeled samples 

to remove that minimizes the entropy over the unlabeled dataset by the removal, and other 

pseudo labeled samples will be reselected in the reselection process. The rollback samples for 

the removal will be selected from only the bin of the last pseudo labeled samples using the 

classification model as follows:  
 

𝑅∆
𝑟𝑒𝑚𝑜𝑣 = 𝑎𝑟𝑔𝑚𝑖𝑛{𝑥1,… ,𝑥𝑟}∈𝛥𝑡

∑ 𝑃(𝑦|𝑥; 𝑔𝐿𝐷\𝑅∆
𝑟𝑒𝑚𝑜𝑣)

𝑥𝑖∈𝑅∆
𝑟𝑒𝑚𝑜𝑣,𝑦∈𝐶

× 

(− ∑ 𝑃(𝑦′|𝑥′; 𝑔𝐿𝐷\𝑅∆
𝑟𝑒𝑚𝑜𝑣)𝑙𝑜𝑔(𝑦′, 𝑥′, 𝑔𝐿𝐷\𝑅∆

𝑟𝑒𝑚𝑜𝑣)𝑥′∈𝛥𝑡,𝑦′∈𝐶 ),                    (6) 

 

where 𝑹∆
𝒓𝒆𝒎𝒐𝒗  denotes rollback samples to be removed for the reselection process. If the 

selected rollback samples are {𝒙𝟏, … , 𝒙𝒓}  which were pseudo labeled by {𝒚𝟏, … , 𝒚𝒓} , 

respectively, and removed from LD, denoted by the set difference 𝑳𝑫\𝑹∆ = 𝑳𝑫\
{(𝒙𝟏, 𝒚𝟏) … , (𝒙𝒓, 𝒚𝒓)}. 

Relabeling process: The selected relabeling samples in 𝑹∆ are updated or added to LD. If a 

label of the rollback sample is changed after the relabeling rollback learning process, the 

forward learning label is replaced with the new one. In this way, the forward labeling error is 

corrected. If a new label is the same with the forward learning one, the rollback sample will 

be treated as a new sample. It will be added to LD. Similar ideas of boosting are discussed in 

[4], whereby the mislabeled sample candidate will be focused more. The relabeling rollback 

learning for one sample is performed by following the formulation similarly to [4] as follows:  
 

𝑥† = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥∈𝐿𝐷

1

𝑍
∑ 𝑃 (𝑦𝑖|𝑥; 𝑔𝐿𝐷\(𝑥,𝑦

𝑖†))

𝑦𝑖∈𝐶,𝑖≠𝑖†

 

× (− ∑ 𝑃(𝑦′|𝑥′; 𝑔𝐿𝐷|(𝑥,𝑦𝑖))𝑙𝑜𝑔(𝑦′, 𝑥′, 𝑔𝐿𝐷|(𝑥,𝑦𝑖))𝑥′∈𝑈𝐿,𝑦′∈𝐶 )                            (7) 

 

where 𝑳𝑫|(𝒙, 𝒚𝒊) denotes the pseudo labeled  𝒙 assigned by  𝒚𝒊. Z is a normalization coefficient 

calculated by 
 

𝑍 = ∑ 𝑃 (𝑦𝑖|𝑥; 𝑔𝐿𝐷\(𝑥,𝑦𝑖
†)) = 1 − (𝑦𝑖

†|𝑥; 𝑔𝐿𝐷\(𝑥,𝑦𝑖
†))

 𝑖≠𝑖†,   𝑦𝑖∈𝐶

 

 

Considering the computation overhead of calculating the model for each relabeled candidates, 

we formalize the relabeling rollback learning process in terms of a pool of relabeled candidates 

in 𝜟𝒊 as follows. 
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𝑅∆
𝑟𝑒𝑙𝑎𝑏 = 𝑎𝑟𝑔𝑚𝑖𝑛{𝑥1,… ,𝑥𝑟}∈𝛥𝑖

1

𝑍
∑ 𝑃 (𝑦𝑖|𝑥; 𝑔𝐿𝐷\𝑅∆

𝑟𝑒𝑙𝑎𝑏)

𝑦𝑖∈𝐶,𝑖∉𝑅∆
𝑟𝑒𝑙𝑎𝑏

 

× (− ∑ 𝑃(𝑦′|𝑥′; 𝑔𝐿𝐷|(𝑥,𝑦𝑖))𝑙𝑜𝑔(𝑦′, 𝑥′, 𝑔𝐿𝐷|(𝑥,𝑦𝑖))𝑥′∈𝛥𝑖,𝑦′∈𝐶 ),                         (8) 

 

where  𝐿𝐷|(𝑥, 𝑦𝑖 ) denotes the pseudo labeled  𝒙  assigned by  𝑦𝑖 . Z is a normalization 

coefficient calculated by 
 

𝑍 = ∑ 𝑃 (𝑦𝑖|𝑥; 𝑔𝐿𝐷\𝑅∆
𝑟𝑒𝑙𝑎𝑏)

  𝑖∉𝑅∆
𝑟𝑒𝑙𝑎𝑏,   𝑦𝑖∈𝐶

 

         = 1 − 𝑃 (𝑦𝑖
†|𝑥; 𝑔𝐿𝐷\𝑅∆

𝑟𝑒𝑙𝑎𝑏), where 𝑦𝑖
† ∈ 𝑅∆

𝑟𝑒𝑙𝑎𝑏.                              (9) 

 

4.3 EER-ASSL Algorithm 

The major tasks of the proposed EER-ASSL consist of the collaborative sampling-based AL 

and the rollback bin-based SSL. In the AL process, a batch of data samples is collected from 

an input data stream, processed by the collaborative sampling algorithm for the informative 

samples with minimum redundancy, is partitioned into bins. In the rollback SSL, the EER 

based rollback learning and the bin-based SSL are combined for rapid adaptive learning. The 

limited labeled samples are used to initialize the CNN model and EER model. The models are 

trained in the bin-based the incremental SSL scheme. If a performance criterion is violated in 

learning the CNN model, the EER method is activated for rapid rollback learning. The volume 

of the reliable labeled dataset 𝐿𝐷 is increased by adding the pseudo labeled data samples. The 

enlarged LD is used to build the next CNN and EER models. The process is repeated until 

convergence. One can notice that the EER rollback model provides a rapid short- term 

adaptation, and a confident and the CNN detector model an incremental long-term 

performance improvement, respectively.  

Let 𝐷𝑑𝑖𝑣 denote the samples mined from the current batch after the collaborative sampling. 

The detailed discussion can be found in [22]. We focus on the rollback bin-based SSL 

algorithm here. Let 𝐷∆ denote the confidential batch dataset for the bin-based SSL, and it will 

be used as the container of the confidential batch dataset. If the cardinality of 𝐷∆ becomes 

confidence parameter 𝛾, the confidence sample selection process is stopped. 𝐷∆ is initialized 

with a sample that satisfies  𝑥𝑡𝑜𝑝 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥 ∈ 𝐷𝑑𝑖𝑣 𝑓(𝑥) ,  𝑥𝑡𝑜𝑝 ∈ 𝐷𝑑𝑖𝑣 . The confidential 

sampling strategy chooses a sample from 𝐷𝑑𝑖𝑣 and adds to 𝐷∆ according to the distance metric 

of the current deep feature space using 𝑥𝑡𝑜𝑝 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥 ∈ 𝐷𝑑𝑖𝑣 {𝑚𝑎𝑥𝑥𝑖, 𝑥𝑗  ∈𝐷∆
𝑑(𝑥𝑖, 𝑥𝑗)}  , 

where 𝑑(𝑥𝑖, 𝑥𝑗) is Euclidian distance between two samples 𝑥𝑖 𝑎𝑛𝑑 𝑥𝑗 in the deep feature space. 

The CNN is retrained using the bin sequence from the confidential samples in  𝐷∆.  The 

confidential samples are partitioned into the bins, and stored in bin pool denoted by 𝑩(=
{𝐵𝑗}𝑗∈𝑩) or = {𝐵0,   .  .  ., 𝐵𝑗,   .  .  .𝐵𝐽} . 

In each rollback bin-based SSL step, the confidence scores are assigned to the pseudo 

samples by the current CNN detector. The labeled data 𝐷0  is used to initialize CNN detector 

model 𝑓0 and EER model 𝑔0 in the beginning, respectively. 𝐴𝑐𝑐0 is calculated by 𝑓0using the 

validation data. For each bin, we build the CNN models  {𝑓0

𝐵𝑗}𝑗=1
𝐽

 using 𝐷0  ∪  𝐵𝑗, respectively. 

Let 𝐴𝑐𝑐1 indicate the maximum accuracy among the scores of the bins calculated by {𝑓0

𝐵𝑗}𝑗=1
𝐽

, 
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i.e., 𝐴𝑐𝑐1 = 𝑚𝑎𝑥
𝐵𝑗

{𝐴𝑐𝑐0

𝐵𝑗}. If the performance improved, i.e., 𝐴𝑐𝑐1  ≥ 𝐴𝑐𝑐0, we move to the 

next step by updating, 𝐷1 = 𝐷0  ∪  𝐵∗ and 𝑓1 =  𝑓0
𝐵∗

. At time step i, for each bin, build the 

CNN models {𝑓
𝑖

𝐵𝑗}𝑗=1
𝐽

 using 𝐷𝑖  ∪  𝐵𝑗 , respectively, and 𝐴𝑐𝑐𝑖+1 = 𝑚𝑎𝑥
𝐵𝑗

{𝐴𝑐𝑐
𝑖

𝐵𝑗}. The cases 

are divided into three: Case 1) 𝐴𝑐𝑐𝑖+1  ≥ 𝐴𝑐𝑐𝑖, Case 2) 𝐴𝑐𝑐𝑖 − 𝜏 < 𝐴𝑐𝑐𝑖+1 𝐴𝑐𝑐𝑖, and Case 3) 

𝐴𝑐𝑐𝑖+1  ≤ 𝐴𝑐𝑐𝑖 − 𝜏, where 𝜏 is a tolerance threshold for an exploration potential.  
 

Case 1: we get the best bin for the next step and update 𝐷𝑖+1 = 𝐷𝑖  ∪  𝐵∗ and 𝑓𝑖+1 =  𝑓𝑖
𝐵∗

; 

𝐵𝑖 =  𝐵∗; 𝑩 = 𝑩\ 𝐵𝑖 . Note that the bin pool 𝑩 is reduced by removing the selected bin. 
 

Case 2: we conduct the following sub-steps: 1) find the removal samples from 𝛥𝑖 using the 

rollback learning process using Eq. (7), 2) find the relabeling samples, and assign them new 

labels from 𝛥𝑖  using the rollback learning process based on Eq. (5), and 3) update 𝛥𝑖  by 

reselection using the EER forward learning process based on Eq. (3).  

The above the forward-rollback learning processes are repeated, until the condition of 

𝐴𝑐𝑐𝑖+1  ≥ 𝐴𝑐𝑐𝑖  or  𝐴𝑐𝑐𝑖+1  ≤ 𝐴𝑐𝑐𝑖 − 𝜏  or a time limit.  If the condition 𝐴𝑐𝑐𝑖+1  ≥ 𝐴𝑐𝑐𝑖  is 

satisfied, we update 𝐷𝑖+1 = 𝐷𝑖  ∪  𝛥𝑗, 𝑓𝑖+1 =  𝑓
𝑖

𝛥𝑗
, 𝑔𝑖+1 =  𝑔

𝑖

𝛥𝑗 , and 𝑩 = 𝑩\ 𝐵𝑖 . 
 

Case 3: oracle labels incorrectly labeled data in 𝐵∗, and update 𝑓𝑖+1 =  𝑓𝑖, 𝑔𝑖+1 =  𝑔𝑖, 𝐷𝑖+1. 

The rollback process of Case 2 can reduce significantly the oracle labeling steps. (𝐷𝑖 ∪ ∆𝑖) 

is used to build a training data set 𝐷𝑖+1, which is used for training 𝑓𝑖+1 and 𝑔𝑖+1 at time t. The 

process is repeated until convergence. Finally, the rollback bin-based SSL produces the two 

models f and g, and enlarged labeled dataset LD. The combination the EER based rollback 

learning and the bin-based SSL allows obtaining a rapid adaptive object detector, even from 

the noisy streaming samples under a dynamically changing environment. The rollback bin-

based SSL algorithm is summarized in Algorithm 1. 
 

Algorithm 1. Rollback bin-based SSL  

Input: bin pool 𝑩  

Output: CNN model f, EER model g, and labeled dataset LD. 

Repeat until 𝑩 ≠  𝜙  

1. For each bin, 𝐵𝑖 ∈ 𝑩 , build  𝑓𝑖+1  using 𝐷𝑖  ∪  𝐵𝑖 , and 

calculate 𝐴𝑐𝑐𝑖
𝐵𝑖. 

2. 𝐴𝑐𝑐𝑖+1 = max
𝐵𝑗

{𝐴𝑐𝑐
𝑖

𝐵𝑗} . 

3. If 𝐴𝑐𝑐𝑖+1  ≥ 𝐴𝑐𝑐𝑖,  

 𝐵∗ = argmax
𝐵𝑗

{𝐴𝑐𝑐
𝑖

𝐵𝑗}, 𝐷𝑖+1 = 𝐷𝑖  ∪  𝐵∗;  

𝑓𝑖+1 =  𝑓𝑖
𝐵∗

 ; 𝐵𝑖 =  𝐵∗, and 𝑩 = 𝑩\ 𝐵𝑖 .  

4. Else if 𝐴𝑐𝑐𝑖 − 𝜏 < 𝐴𝑐𝑐𝑖+1 < 𝐴𝑐𝑐𝑖,   

While 𝐴𝑐𝑐𝑖 − 𝜏 < 𝐴𝑐𝑐𝑖+1 < 𝐴𝑐𝑐𝑖,  

4.1 Remove the samples from Δ𝑖 , i.e., the removing 

rollback process using Eq. (5). 

4.2 Relabel the samples in Δ𝑖 i.e., the relabeling rollback 
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process using Eq. (7). 

4.3 Reselect the samples from 𝐵𝑖 using the forward 

learning process using Eq. (3). 

4.4. If 𝐴𝑐𝑐𝑖+1  ≥ 𝐴𝑐𝑐𝑖 ,  𝐷𝑖+1 = 𝐷𝑖  ∪  Δ𝑗 , 𝑓𝑖+1 =  𝑓
𝑖

Δ𝑗
, 

𝑔𝑖+1 =  𝑔
𝑖

Δ𝑗 , and 𝑩 = 𝑩\ 𝐵𝑖 . i++ 

Else if 𝐴𝑐𝑐𝑖+1 < 𝐴𝑐𝑐𝑖 − 𝜏  or time limit, oracle labels 

incorrectly labeled data in 𝐵∗.  

          𝑓𝑖+1 =  𝑓𝑖 , 𝑔𝑖+1 =  𝑔𝑖, 𝐷𝑖+1, i++.  

Return {𝑓 = 𝑓𝑖+1, 𝑔 = 𝑔𝑖+1, 𝐿𝐷 = 𝐷𝑖+1} 

5. Experiments 

Extensive experiments are conducted using the benchmark datasets, such as PASCAL VOC 

as well as a local dataset, and the performances are compared with state-of-the-art detectors 

technology such as Faster RCNN, SSD300, and YOLOv2. The experimental implementations 

are conducted using a single server with a single NVIDIA TITAN X with cuDNN [10] and 

Tensorflow [36]. We used the experiment settings as the Darknet-19 CNN model [30] with 

the base detector is YOLOv2, which is the state-of-the-art object detector. 

5.1. Benchmark Datasets 

PASCAL VOC dataset: Famous PASCAL VOC benchmark has two versions: Pascal VOC 

2007 and 2012 [8]. Pascal VOC 2007 consists 20 classes with the total of 9963 images 

(train/validation/test) with 24,640 annotated objects. Pascal VOC 2012 has 20 classes with 

11,530 images (train/validation/test) containing 27,450 annotated objects. The YOLOv2 

model was trained using the PASCAL VOC 2007 trainval dataset and the PASCAL VOC 2012 

trainval dataset. Pascal VOC 2007 dataset has four super classes: person, animal, vehicle, 

indoor. Our experiments focused on the object classes in the indoor environment, i.e., bottle, 

chair, dining table, potted plant, sofa, and tv monitor. 

Local dataset: The dataset of 450 chair images, 450 potted plant images 450 ticket gate 

images and 450 table images are selected in the local areas. We use the input image resolution 

of 416 × 416 pixels. We used 12 chair images as the initial labeled data sample. The 98 images 

are selected randomly, and used for the validation dataset. The remaining 340 images of each 

class were used for an unlabeled dataset for the experiments. When trained using the PASCAL 

VOC dataset, the local dataset produces very poor detection results with YOLOv2, even it is 

state-of-the-art object detection technology [10]. 

5.2. Experiment parameter settings 

Our object detection method used the evaluation of the PASCAL VOC challenge [36, 37].  

This is applied where an average precision is computed by averaging the precision over a set 

of evenly spaced recall levels.  
 

                                         𝐴𝑣𝑒𝑃 =  
1

11
∑ 𝑃𝑖𝑛𝑡𝑒𝑟𝑝(𝑟)

𝑟∈{0,0.1,…1.0}                                        (10) 
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Here, 𝑃𝑖𝑛𝑡𝑒𝑟𝑝(𝑟)  is an interpolated precision that takes the maximum precision over all 

recall greater than r. We use the Intersection over Union (IoU) in order to calculate the overlap 

between two boundaries that ground truth and prediction. We mentioned in (Fig. 7), the red 

bounding box represents ground truth, the black bounding box indicates EER-ASSL, and the 

yellow bounding box represents the YOLOv2 VOC model. In our experiment we consider IoU 

threshold value predefine to be 0.5.  (IOU=> 0.5). If the performance of prediction is over the 

threshold value we consider as correct otherwise it is considered incorrect. In order to get the 

best performance we apply the gradient based optimization method Adam and the stochastic 

gradient descent (SGD). For both of these optimizers we select the learning rate 0.001. 

However, the SGD optimizer is much slower in our experiment compared to Adam with 500 

epochs as shown in (Fig. 3). 

 

 
 

 
Fig. 3.  Experiment result with different learning rate using Adam and SGD optimizer 

 

Fig. 3 represents the experiment results with various learning rates while training the local 

dataset using Adam and SGD optimizer. We select Adam optimizer with the learning rate 0.01 

and 0.001 due to the fact that the learning rate 0.001 has a higher and more stable performance. 

Our training process is divided into several steps such as phase 1 and phase 2 [21]. Both SGD 

and Adam optimizer were used for training the different number of bins. The total number of 

the bins is 20 for two phases. Our experiment shows Adam optimizer to have a faster (time) 

convergence than the SGD optimizer with a higher AP. For this reason we selected Adam 

optimizer with the 0.001 learning rate.  We divided the entire labeled dataset into two phases. 

In phase1, the parameter combination is as follows: uncertainty, diversity, and confidence [0.8, 

0.8, 0.8]. Based on the performance, we change the parameter combination to either [0.8, 0.6, 

0.8] or [0.8, 0.8, 0.6]. 

5.3 Effect of EER-ASSL  

The performance of the proposed EER-ASSL, IASSL, and simple SSL are compared in Fig. 

4. The collaborative sampling parameters are set by [0.8, 0.6, 0.8] for uncertainty, diversity, 

and confidence for all experiments.  Adam optimizer was used with the learning rate 0.001. 
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One can notice that the EER-ASSL has much improved performance over the incremental 

ASSL. The simple SSL performance rarely improved. 

 
Fig. 4.  The information flow of the rollback based ASSL 

5.4 Testing on noisy local images 

 

Fig. 5. Noisy image samples with labeling result 

 

 

Fig. 6. The performance comparisons measured by the average precision (AP) of EER-ASSL using 

noisy local images 
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Using local noisy images (Fig. 6), we compared EER-ASSL, IASSL [21], and Iterative 

Cross learning (ICL) that shows much improvement on noisy images [22]. ICL is tested by 

image classification performance, while EER- ASSL is evaluated by object detection 

performance, where both the bounding box positions and the class labels are noisy. The 

learning rate of Adam optimizer is set 0.001. The experiment results are shown in Fig. 3. In 

the beginning, EER-ASSL shows low performance (AP) affected by the noisy data, but after 

the 4th bin of the first phase, it outperforms the other methods. The experiment results are 

reflected in Fig. 7. One can notice that EER-ASSL demonstrates outstanding performance 

under diverse illumination changes. 
 

 

Fig. 7.  The detection result from IASSL on local datasets of chairs, sofas, and tables. In all cases, the 

red bounding box represents ground truth, the black bounding box indicates EER-ASSL, and the 

yellow bounding box represents the YOLOv2 VOC model 

 

5.5. Comparison with state-of-the-art technology 

EER-ASSL is compared with several state-of-the-art object detectors. Each of four objects has 

100 labeled and 300 unlabeled data samples, where local chair, sofa, and table images were 

mixed with the PASCAL VOC test data for fair evaluation. The detectors were trained with 

the same benchmark dataset and local dataset for a fair evaluation. Table 1 shows the 

comparison results where each column indicates the composition ratio for both benchmark and 

local data. 
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Table 1. Performance comparison of state-of-the-art object detectors and EER-ASSL in terms of the 

mAP measure 

 

Method 

 

 

(0,100)* 

 

(10,90) 

 

(25,75) 

 

(50,50) 

 

(75,25) 

 

(90,10) 

Faster RCNN 67.7  67.9  68.1  68.3  68.9  69.3 

SSD300 68.4  68.8  69.1  69.3  69.8  70.3  

YOLOv2 70.1  70.4  70.6  71.1  71.5  71.5  

EER-ASSL 71.9  71.7  70.0  69.9  68.6  67.6  
*In the first row (a, b) indicates the composition ratio for all data, in which “a” represents VOC 2007 test data, and 

“b” represents the ratio of local data 

 

YOLOv2 trains the network using the ImageNet [7, 39, 40] 1000 class classification dataset 

and then modifies the network in order to perform the detection. This jointly training 

classification and detection data is much larger than the local dataset which is limited in 

number to only 100 images for each class such as a sofa or a ticket gate. As a result, decreasing 

local training data has not much effect on the YOLOv2 model in our experiment. On the other 

hand, our EER-ASSL model already adapted the local data and if the composition data ratio 

is over 50 percent then the EER-ASSL outperforms other state-of-the-art methods that can be 

seen in the additional columns (10,90) and (25,75). 
 

 
Fig. 8.  Performance comparison of state-of-the-art object detectors and EER-ASSL in terms of 

mAP measure on benchmark datasets 

 

The comparison of EER-ASSL, in terms of mAP, with state-of-the-art object detectors such 

as Faster RCNN, SSD 300, and YOLOv2 are shown in Table 2. The experiments were 

conducted similar to previous works considering incremental learning with Fast RCNN and 
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Faster RCNN [11, 36]. Similarly, we use our baseline detector as YOLOv2 using both local 

and benchmark dataset. Both PASCAL VOC 2007 test data and our local data are employed. 

The collaborative sampling parameters are set 0.8, 0.6, and 0.8 for uncertainty, diversity, and 

confidence, respectively. EER-ASSL shows great improvement from the other object detectors.  
 

Table 2. EER-ASSL performance in terms of mAP measure on local dataset 

Method 

(local data) 
mAP 

Batch 

size 
Trained-on 

Speed 

(fps) 
#Boxes 

Input 

resolution 

Faster RCNN 67.7 1 07+12 5 ~6000 ~1000×600 

SSD300 68.4 8 07+12 59 8732 300×300 

YOLOv2 71.0 1 07+12 67 845 416×416 

Ours (EER-ASSL) 71.9 1 07+12+local 42 845 416×416 

 

Table 2 summarizes the mean average precision of the state-of-the-art methods on local test 

datasets. Our proposed EER-ASSL method shows improvement in performance in higher 

mAP results with new objects such as a sofa or a ticket gate in a similar environment. As 

shown in Table 2, our EER-ASSL method’s adaptive property significantly improves the 

detection performance with a faster computational speed on the local dataset and its 

environment.  

6. Concluding remarks 

This paper presents EER-ASSL combining the ERR-based rollback learning and the bin-based 

SSL for a CNN object detector in the presence of noisy data distributions. The ensemble of 

ERR-based prediction model and CNN detector model achieves higher accuracy and requires 

less human effort, compared with state-of-the-art detectors. The EER learning method 

supports a rapid short-term myopic adaptation, and the CNN models an incremental long-term 

performance improvement. The future research direction is to build an adaptive and improved 

deep learning architecture by cooperating with the fast feed forward networks and the extreme 

learning machines to find ways to achieve a more flexible and fast adaptive learning sequence 

in noisy data distributions. 
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