DOI QR코드

DOI QR Code

Ultrafiltration and Diafiltration Processes for Concentration and Formulation of Antibody-based Therapeutics

항체의약품 농축 및 제제화를 위한 한외여과 및 정용여과 공정

  • Lee, Jieun (Department of Biotechnology, Sungshin Women's University) ;
  • Lee, Jiyoon (Department of Biotechnology, Sungshin Women's University) ;
  • Baek, Youngbin (Department of Biotechnology, Sungshin Women's University)
  • 이지은 (성신여자대학교 바이오생명공학과) ;
  • 이지윤 (성신여자대학교 바이오생명공학과) ;
  • 백영빈 (성신여자대학교 바이오생명공학과)
  • Received : 2020.10.23
  • Accepted : 2020.11.24
  • Published : 2020.12.31

Abstract

Antibody-based therapeutics have been receiving great attention as a representative biopharmaceutical, in which many researches are also carried out for its commercialization. The downstream process is considered an important part of the manufacturing processes of antibody-based therapeutics since it directly affects the performance and stability of products. Ultrafiltration/diafiltration (UF/DF), mostly performed in final step during downstream process, are used for the final concentration and formulation of antibody-based therapeutics. This paper reviewed the major products of the UF membrane, process characteristics, and recent research trends in UF/DF.

바이오의약품 중에서도 항체의약품의 수요가 증가함에 따라 항체를 상업용으로 개발하기 위한 연구가 활발히 진행되고 있다. 항체의약품의 제조공정 중 downstream 공정은 의약품 성능에 직접적으로 영향을 미치기 때문에 중요하게 다뤄지며, 본 총설은 그 중에서도 농축 및 제제화를 목적으로 행해지는 한외여과 및 정용여과 공정에서 사용되는 한외여과막의 주요 제품 및 공정 특성을 살펴보고, 최근 연구 동향에 대해 소개하고자 한다.

Keywords

References

  1. A. M. Scott, J. D. Wolchok, and L. J. Old, "Antibody therapy of cancer", Nat. Rev. Cancer, 12, 278 (2012). https://doi.org/10.1038/nrc3236
  2. A. L. Nelson, E. Dhimolea, and J. M. Reichert, "Development trends for human monoclonal antibody therapeutics", Nat. Rev. Drug Discov., 9, 767 (2010). https://doi.org/10.1038/nrd3229
  3. L. M. Weiner, R. Surana, and S. Wang, "Monoclonal antibodies: Versatile platforms for cancer immunotherapy", Nat. Rev. Immunol., 10, 317 (2010). https://doi.org/10.1038/nri2744
  4. W. Wang, S. Singh, D. L. Zeng, K. King, and S. Nema, "Antibody structure, instability, and formulation", J. Pharm. Sci., 96, 1 (2007). https://doi.org/10.1002/jps.20727
  5. www.evaluate.com/PharmaWorldPreview2019, September 11 (2020).
  6. 한국수출입은행 해외경제연구소, "세계 바이오의약품산업 동향 및 전망" (2019).
  7. Lg경제연구원, "차세대 바이오 의약품, 세포치료제 시장 현황과 전망" (2017).
  8. A. Mehta, "Downstream Processing for Biopharmaceuticals Recovery", pp. 163-190, Springer, Berlin (2019).
  9. R. van Reis and A. Zydney, "Bioprocess membrane technology", J. Memb. Sci., 297, 16 (2007). https://doi.org/10.1016/j.memsci.2007.02.045
  10. T. H. Choi and H. B. Park, "Membrane and virus filter trends in the processes of biopharmaceutical production", Membr. J., 30, 9 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.1.9
  11. https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma-Aldrich/General_Information/2/pellicon3_30kd_cleanability_techbrief-tb1241en-mk.pdf (2017).
  12. https://www.pall.com/content/dam/pall/biopharm/lit-library/non-gated/procedures/09.3090_USTR2433b_T_Series_Cassettes_Omega_IFU_EN.pdf, December 9 (2009).
  13. https://www.emdmillipore.com/Web-CA-Site/en_CA/-/CAD/ShowDocument-Pronet?id=201501.131, March (2018).
  14. http://tangenx.com/wp-content/uploads/2015/01/TX-ProStream-HD.pdf, January (2015).
  15. https://www.zind-vt.com/pdfs/HyStream.pdf, January (2015).
  16. https://www.sartorius.com/shop/medias/-datasheet-enData-Hydrosart-Ultraf-White-Silicone-SPC2063-e.pdf (2019).
  17. www.sartorius-stedim.com, September 11 (2020).
  18. https://shop.pall.com/us/en/biotech/tangential-flowfiltration/cassettes/zidgri78m0j, September 11 (2020).
  19. https://shop.pall.com/us/en/biotech/tangential-flowfiltration/cassettes/zidgri78lp2, September 11 (2020).
  20. https://shop.pall.com/us/en/biotech/tangential-flowfiltration/cassettes/zidgri78m0j, September 11 (2020).
  21. https://www.repligen.com/technologies/tangenx-tff/pro-reusable, September 11 (2020).
  22. A. Arunkumar, N. Singh, E. G. Schutsky, M. Peck, R. K. Swanson, M. C. Borys, and Z. J. Li, "Effect of channel-induced shear on biologics during ultrafiltration/diafiltration (UF/DF)", J. Memb. Sci., 514, 671 (2016). https://doi.org/10.1016/j.memsci.2016.05.031
  23. https://www.emdmillipore.com/Web-CA-Site/en_CA/-/CAD/ShowDocument-Pronet?id=201306.4194, December (2018).
  24. https://bioprocessintl.com/downstream-processing/filtration/integrity-testing-of-ultrafiltration-systemsfor-biopharmaceutical-applications-335646/, August 31 (2020).
  25. https://www.emdmillipore.com/Web-US-Site/en_CA/-/USD/ShowDocument-Pronet?id=201306.11634, May (2017).
  26. Y. Baek, D. Yang, and A. L. Zydney, "Development of a hydrodynamic cleaning cycle for ultrafiltration/diafiltration processes used for monoclonal antibody formulation", Ind. Eng. Chem. Res., 57, 16110 (2018). https://doi.org/10.1021/acs.iecr.8b02608
  27. Y. Baek and A. L. Zydney, "Intermolecular interactions in highly concentrated formulations of recombinant therapeutic proteins", Current Opinion in Biotechnology, 53, 59 (2018). https://doi.org/10.1016/j.copbio.2017.12.016
  28. https://www.emdmillipore.com/Web-PR-Site/en_CA/-/USD/ShowDocument-File?ProductSKU=MM_NFC9947&DocumentId=201306.4192.ProNet&DocumentType=UG&Language=EN&Country=NF&Origin=PDP, February (2019).
  29. https://www.pall.com/content/dam/pall/biopharm/lit-library/non-gated/procedures/09.3100_USTR2453b_T_Series_Cassettes_Omega_Delta_IFU_EN.pdf, December 9 (2009).
  30. https://www.pall.com/content/dam/pall/biopharm/lit-library/non-gated/procedures/11.7322_USTR2662(3)_T_Series_Cassettes_Delta_IFU_EN.pdf, August 11 (2011).
  31. https://www.repligen.com/technologies/tangenx-tff/sius-single-use, September 21 (2020).
  32. P. Ng, J. Lundblad, and G. Mitra, "Note: optimization of solute separation by diafiltration", Separation Science, 11, 499 (1976). https://doi.org/10.1080/01496397608085339
  33. K. McKeage, "A review of CT-P13: An infliximab biosimilar", BioDrugs, 28, 313 (2014). https://doi.org/10.1007/s40259-014-0094-1
  34. W. Du and A. M. Klibanov, "Hydrophobic salts markedly diminish viscosity of concentrated protein solutions", Biotechnol. Bioeng., 108, 632 (2011). https://doi.org/10.1002/bit.22983
  35. T. M. Scherer, "Cosolute effects on the chemical potential and interactions of an IgG1 monoclonal antibody at high concentrations", J. Phys. Chem. B, 117, 2254 (2013). https://doi.org/10.1021/jp3091717
  36. K. P. Johnston, J. A. Maynard, T. M. Truskett, A. U. Borwankar, M. A. Miller, B. K. Wilson, A. K. Dinin, T. A. Khan, and K. J. Kaczorowski, "Concentrated dispersions of equilibrium protein nanoclusters that reversibly dissociate into active monomers", ACS Nano, 6, 1357 (2012). https://doi.org/10.1021/nn204166z
  37. A. U. Borwankar, A. K. Dinin, J. R. Laber, A. Twu, B. K. Wilson, J. A. Maynard, T. M. Truskett, and K. P. Johnston, "Tunable equilibrium nanocluster dispersions at high protein concentrations", Soft Matter, 9, 1766 (2013). https://doi.org/10.1039/c2sm27480a
  38. N. Inoue, E. Takai, T. Arakawa, and K. Shiraki, "Specific decrease in solution viscosity of antibodies by arginine for therapeutic formulations", Mol. Pharm., 11, 1889 (2014). https://doi.org/10.1021/mp5000218
  39. Z. Guo, A. Chen, R. A. Nassar, B. Helk, C. Mueller, Y. Tang, K. Gupta, and A. M. Klibanov, "Structure-activity relationship for hydrophobic salts as viscosity-lowering excipients for concentrated solutions of monoclonal antibodies", Pharm. Res., 29, 3102 (2012). https://doi.org/10.1007/s11095-012-0802-9
  40. A. U. Borwankar, B. J. Dear, A. Twu, J. J. Hung, A. K. Dinin, B. K. Wilson, J. Yue, J. A. Maynard, T. M. Truskett, and K. P. Johnston, "Viscosity reduction of a concentrated monoclonal antibody with arginine.HCl and arginine.glutamate", Ind. Eng. Chem. Res., 55, 11225 (2016). https://doi.org/10.1021/acs.iecr.6b02042
  41. Y. Baek, N. Singh, A. Arunkumar, M. Borys, Z. J. Li, and A. L. Zydney, "Ultrafiltration behavior of monoclonal antibodies and Fc-fusion proteins: Effects of physical properties", Biotechnol. Bioeng., 114, 2057 (2017). https://doi.org/10.1002/bit.26326
  42. M. R. Stoner, N. Fischer, L. Nixon, S. Buckel, M. Benke, F. Austin, T. W. Randolph, and B. S. Kendrick, "Protein-solute interactions affect the outcome of ultrafiltration/diafiltration operations", J. Pharm. Sci., 93, 2332 (2004). https://doi.org/10.1002/jps.20145
  43. G. R. Bolton, A. W. Boesch, J. Basha, D. P. LaCasse, B. D. Kelley, and H. Acharya, "Effect of protein and solution properties on the donnan effect during the ultrafiltration of proteins", Biotechnol. Prog., 27, 140 (2011). https://doi.org/10.1002/btpr.523
  44. F. Miao, A. Velayudhan, E. DiBella, J. Shervin, M. Felo, M. Teeters, and P. Alred, "Theoretical analysis of excipient concentrations during the final ultrafiltration/diafiltration step of therapeutic antibody", Biotechnol. Prog., 25, 964 (2009). https://doi.org/10.1002/btpr.168
  45. M. Teeters, D. Bezila, T. Benner, P. Alfonso, and P. Alred, "Predicting diafiltration solution compositions for final ultrafiltration/diafiltration steps of monoclonal antibodies", Biotechnol. Bioeng., 108, 1338 (2011). https://doi.org/10.1002/bit.23067
  46. Y. Baek, N. Singh, A. Arunkumar, A. Borwankar, and A. L. Zydney, "Mass balance model with donnan equilibrium accurately describes unusual pH and excipient profiles during diafiltration of monoclonal antibodies", Biotechnol. J., 14, 1800517 (2019). https://doi.org/10.1002/biot.201800517
  47. C. Casey, T. Gallos, Y. Alekseev, E. Ayturk, and S. Pearl, "Protein concentration with single-pass tangential flow filtration (SPTFF)", J. Memb. Sci., 384, 82 (2011). https://doi.org/10.1016/j.memsci.2011.09.004
  48. J. Dizon-Maspat, J. Bourret, A. D'Agostini, and F. Li, "Single pass tangential flow filtration to debottleneck downstream processing for therapeutic antibody production", Biotechnol. Bioeng., 109, 962 (2012). https://doi.org/10.1002/bit.24377
  49. L. Fernandez-Cerezo, A. C. M. E. Rayat, A. Chatel, J. M. Pollard, G. J. Lye, and M. Hoare, "The prediction of the operating conditions on the permeate flux and on protein aggregation during membrane processing of monoclonal antibodies", J. Memb. Sci., 596, 117606 (2020). https://doi.org/10.1016/j.memsci.2019.117606