DOI QR코드

DOI QR Code

가소화 저항 향상을 위한 기체분리막 소재 개발 동향

Review on Membrane Materials to Improve Plasticization Resistance for Gas Separations

  • 조진희 (전남대학교 고분자융합소재공학부) ;
  • 지원석 (전남대학교 고분자융합소재공학부)
  • Jo, Jin Hui (School of Polymer Science and Engineering, Chonnam National University) ;
  • Chi, Won Seok (School of Polymer Science and Engineering, Chonnam National University)
  • 투고 : 2020.11.25
  • 심사 : 2020.12.20
  • 발행 : 2020.12.31

초록

기체분리공정에서 사용되는 분리막은 높은 기체 투과 및 분리성능과 고온·고압 조건에서 높은 안정성을 보여야 한다. 하지만 고분자분리막(특히, 유리상 고분자)은 응축 가능한 기체 분자(예를 들어, CO2, H2S, hydrocarbon 등)에 노출되면 고분자 사슬이 부풀어 오르는 가소화 현상을 보여 안정성 측면에서 한계를 보인다. 이러한 가소화 현상은 고압의 복합기체 분리공정에서 선택도를 감소시켜 장기적으로는 고분자분리막이 분리공정에 도입될 수 없는 문제를 가져온다. 이러한 가소화 현상 문제를 해결하기 위해서 분리막 연구자들은 분리막 열처리, 고분자 혼합, 고분자구조의 열적 재배열, 혼합매질분리막 제작, 가교화 방법 등을 통하여 분리막의 가소화 저항을 향상시켰다. 본 총설에서는 고분자 분리막의 가소화 저항의 개념 및 현상에 대해서 알아보고 이를 해결할 수 있는 인자들과 그와 연관된 연구들을 살펴보도록 할 것이다.

In the gas separation process, the separation membranes have to not only show high gas transport and selectivity but also exhibit exceptional stability at high temperature and pressure. However, when the polymeric membranes (particularly, glassy polymers) are exposed to the condensable gases (i.e., CO2, H2S, hydrocarbon, etc.), the polymer chains are prone to swell, leading to low stability. As a result, the plasticization behavior reduces the gas selectivity in the separation of mixture gases at high pressures and thus results in limited applications to the separation processes. To address these issues, many strategies have been studied such as thermal treatment, polymer blending, thermally rearrangement, mixed-matrix membranes, cross-linking, etc. In this review, we will understand the plasticization behavior and suggest potential methods based on the previously reported studies.

키워드

참고문헌

  1. R. W. Baker, "Future directions of membrane gas separation technology", Ind. Eng. Chem. Res., 41, 1393 (2002). https://doi.org/10.1021/ie0108088
  2. R. W. Baker and B. T. Low, "Gas separation membrane materials: A perspective", Macromolecules, 47, 6999 (2014). https://doi.org/10.1021/ma501488s
  3. L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
  4. J. Dechnik, J. Gascon, C. J. Doonan, C. Janiak, and C. J. Sumby, "Mixed-matrix membranes", Angew. Chemie Int. Ed., 56, 9292 (2017). https://doi.org/10.1002/anie.201701109
  5. M. R. Tant and G. L. Wilkes, "An overview of the nonequilibrium behavior of polymer glasses", Polym. Eng. Sci., 21, 874 (1981). https://doi.org/10.1002/pen.760211403
  6. B. W. Rowe, B. D. Freeman, and D. R. Paul, "Physical aging of ultrathin glassy polymer films tracked by gas permeability", Polymer, 50, 5565 (2009). https://doi.org/10.1016/j.polymer.2009.09.037
  7. A. Bos, I. G. M. Punt, M. Wessling, and H. Strathmann, "CO2-induced plasticization phenomena in glassy polymers", J. Membr. Sci., 155, 67 (1999). https://doi.org/10.1016/S0376-7388(98)00299-3
  8. J. E. Bachman, Z. P. Smith, T. Li, T. Xu, and J. R. Long, "Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals", Nat. Mater., 15, 845 (2016). https://doi.org/10.1038/nmat4621
  9. J. D. Wind, C. Staudt-Bickel, D. R. Paul, and W. J. Koros, "The effects of crosslinking chemistry on CO2 plasticization of polyimide gas separation membranes", Ind. Eng. Chem. Res., 41, 6139 (2002). https://doi.org/10.1021/ie0204639
  10. M. Galizia, W. S. Chi, Z. P. Smith, T. C. Merkel, R. W. Baker, and B. D. Freeman, "50th anniversary perspective: Polymers and mixed matrix membranes for gas and vapor separation: A review and prospective opportunities", Macromolecules, 50, 7809 (2017). https://doi.org/10.1021/acs.macromol.7b01718
  11. S. R. Reijerkerk, K. Nijmeijer, C. P. Ribeiro, B. D. Freeman, and M. Wessling, "On the effects of plasticization in CO2/light gas separation using polymeric solubility selective membranes", J. Membr. Sci., 367, 33 (2011). https://doi.org/10.1016/j.memsci.2010.10.035
  12. A. Marcano, K. Fatyeyeva, M. Koun, P. Dubuis, M. Grimme, and S. Marais, "Recent developments in the field of barrier and permeability properties of segmented polyurethane elastomers", Rev. Chem. Eng., 35, 445 (2019). https://doi.org/10.1515/revce-2017-0033
  13. A. Bos, I. G. M. Punt, M. Wessling, and H. Strathmann, "Plasticization-resistant glassy polyimide membranes for CO2/CO4 separations", Sep. Purif. Technol., 14, 27 (1998). https://doi.org/10.1016/S1383-5866(98)00057-4
  14. G. Dong, H. Li, and V. Chen, "Plasticization mechanisms and effects of thermal annealing of matrimid hollow fiber membranes for CO2 removal", J. Membr. Sci., 369, 206 (2011). https://doi.org/10.1016/j.memsci.2010.11.064
  15. J. J. Krol, M. Boerrigter, and G. H. Koops, "Polyimide hollow fiber gas separation membranes: preparation and the suppression of plasticization in propane/propylene environments", J. Membr. Sci., 184, 275 (2001). https://doi.org/10.1016/S0376-7388(00)00640-2
  16. A. F. Ismail and W. Lorna, "Suppression of plasticization in polysulfone membranes for gas separations by heat-treatment technique", Sep. Purif. Technol., 30, 37 (2003). https://doi.org/10.1016/S1383-5866(02)00097-7
  17. W. F. Yong, K. H. A. Kwek, K. S. Liao, and T. S. Chung, "Suppression of aging and plasticization in highly permeable polymers", Polymer, 77, 377 (2015). https://doi.org/10.1016/j.polymer.2015.09.075
  18. A. Bos, I. Punt, H. Strathmann, and M. Wessling, "Suppression of gas separation membrane plasticization by homogeneous polymer blending", AIChE J., 47, 1088 (2001). https://doi.org/10.1002/aic.690470515
  19. W. F. Yong, F. Y. Li, T. S. Chung, and Y. W. Tong, "Molecular interaction, gas transport properties and plasticization behavior of cPIM-1/Torlon blend membranes", J. Membr. Sci., 462, 119 (2014). https://doi.org/10.1016/j.memsci.2014.03.046
  20. A. Brunetti, M. Cersosimo, G. Dong, K. T. Woo, J. Lee, J. S. Kim, Y. M. Lee, E. Drioli, and G. Barbieri, "In situ restoring of aged thermally rearranged gas separation membranes", J. Membr. Sci., 520, 671 (2016). https://doi.org/10.1016/j.memsci.2016.07.030
  21. C. A. Scholes, C. P. Ribeiro, S. E. Kentish, and B. D. Freeman, "Thermal rearranged poly(benzoxazole-co-imide) membranes for CO2 separation", J. Membr. Sci., 450, 72 (2014). https://doi.org/10.1016/j.memsci.2013.08.049
  22. D. F. Sanders, R. Guo, Z. P. Smith, Q. Liu, K. A. Stevens, J. E. McGrath, D. R. Paul, and B. D. Freeman, "Influence of polyimide precursor synthesis route and ortho-position functional group on thermally rearranged (TR) polymer properties: Conversion and free volume", Polymer, 55, 1636 (2014). https://doi.org/10.1016/j.polymer.2014.02.001
  23. C. A. Scholes, C. P. Ribeiro, S. E. Kentish, and B. D. Freeman, "Thermal rearranged poly(benzoxazole)/polyimide blended membranes for CO2 separation", Sep. Purif. Technol., 124, 134 (2014). https://doi.org/10.1016/j.seppur.2014.01.012
  24. H. B. Park, C. H. Jung, Y. M. Lee, A. J. Hill, S. J. Pas, S. T. Mudie, E. Van Wagner, B. D. Freeman, D. J. Cookson, "Polymers with cavities tuned for fast selective rransport of small molecules and ions", Science, 318, 254 (2007). https://doi.org/10.1126/science.1146744
  25. K. L. Gleason, Z. P. Smith, Q. Liu, D. R. Paul, and B. D. Freeman, "Pure- and mixed-gas permeation of CO2 and CH4 in thermally rearranged polymers based on 3,3'-dihydroxy-4,4'-diamino-biphenyl (HAB) and 2,2'-bis-(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA)", J. Membr. Sci., 475, 204 (2015). https://doi.org/10.1016/j.memsci.2014.10.014
  26. P. S. Goh, A. F. Ismail, S. M. Sanip, B. C. Ng, and M. Aziz, "Recent advances of inorganic fillers in mixed matrix membrane for gas separation", Sep. Purif. Technol., 81(3), 243 (2011). https://doi.org/10.1016/j.seppur.2011.07.042
  27. D. Gomes, S. P. Nunes, and K. V. Peinemann, "Membranes for gas separation based on poly(1-trimethylsilyl-1-propyne)-silica nanocomposites", J. Membr. Sci., 246(1), 13 (2005). https://doi.org/10.1016/j.memsci.2004.05.015
  28. M. Z. Ahmad, T. A. Peters, N. M. Konnertz, T. Visser, C. Tellez, J. Coronas, V. Fila, W. M. de Vos, and N. E. Benes, "High-pressure CO2/CH4 separation of Zr-MOFs based mixed matrix membranes", Sep. Purif. Technol., 230, 115858 (2020). https://doi.org/10.1016/j.seppur.2019.115858
  29. K. K. Gangu, S. Maddila, S. B. Mukkamala, and S. B. Jonnalagadda, "A review on contemporary metal-organic framework materials", Inorganica Chim. Acta, 446, 61 (2016). https://doi.org/10.1016/j.ica.2016.02.062
  30. S. Shahid and K. Nijmeijer, "Performance and plasticization behavior of polymer-MOF membranes for gas separation at elevated pressures", J. Memb. Sci., 470, 166 (2014). https://doi.org/10.1016/j.memsci.2014.07.034
  31. Y. Ying, Y. Cheng, S. B. Peh, G. Liu, B. B. Shah, L. Zhai, and D. Zhao, "Plasticization resistance-enhanced CO2 separation at elevated pressures by mixed matrix membranes containing flexible metal-organic framework fillers", J. Membr. Sci., 582, 103 (2019). https://doi.org/10.1016/j.memsci.2019.03.088
  32. P. S. Tin, T. S. Chung, Y. Liu, R. Wang, S. L. Liu, and K. P. Pramoda, "Effects of cross-linking modification on gas separation performance of matrimid membranes", J. Membr. Sci., 225(1), 77 (2003). https://doi.org/10.1016/j.memsci.2003.08.005
  33. Y. Liu, R. Wang, and T. S. Chung, "Chemical cross-linking modification of polyimide membranes for gas separation", J. Membr. Sci., 189(2), 231 (2001). https://doi.org/10.1016/S0376-7388(01)00415-X
  34. Y. M. Xu, N. L. Le, J. Zuo, and T. S. Chung, "Aromatic polyimide and crosslinked thermally rearranged poly(benzoxazole-co-imide) membranes for isopropanol dehydration via pervaporation", J. Membr. Sci., 499, 317 (2016). https://doi.org/10.1016/j.memsci.2015.10.059
  35. R. Xu, L. Li, X. Jin, M. Hou, L. He, Y. Lu, C. Song, and T. Wang, "Thermal crosslinking of a novel membrane derived from phenolphthalein-based cardo poly(arylene ether ketone) to enhance CO2/CH4 separation performance and plasticization resistance", J. Membr. Sci., 586, 306 (2019). https://doi.org/10.1016/j.memsci.2019.05.084
  36. A. M. W. Hillock and W. J. Koros, "Cross-linkable polyimide membrane for natural gas purification and carbon dioxide plasticization reduction", Macromolecules, 40, 583 (2007). https://doi.org/10.1021/ma062180o