DOI QR코드

DOI QR Code

Research of Cross-linked Hydrocarbon based Polymer Electrolyte Membranes for Polymer Electrolyte Membrane Fuel Cell Applications

고분자 전해질 막 연료전지 응용을 위한 탄화수소계 기반 가교 전해질 막의 연구동향

  • Ko, Hansol (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Kim, Mijeong (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Kim, Kihyun (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
  • 고한솔 (경상대학교 나노신소재융합공학과) ;
  • 김미정 (경상대학교 나노신소재융합공학과) ;
  • 남상용 (경상대학교 나노신소재융합공학과) ;
  • 김기현 (경상대학교 나노신소재융합공학과)
  • Received : 2020.12.17
  • Accepted : 2020.12.22
  • Published : 2020.12.31

Abstract

Polymer electrolyte membrane fuel cells (PEMFCs) have gained much attention as eco-friendly energy conversion devices without emission of environmental pollutant. Polymer electrolyte membrane (PEM) that can transfer proton from anode to cathode and also prevent fuel cross-over has been regarded as a key component of PEMFCs. Although perfluorinated polymer membranes such as Nafion® were already commercialized in PEMFCs, their high cost and toxic byproduct generated by degradation have still limited the wide spread of PEMFCs. To overcome these issues, development of hydrocarbon based PEMs have been studied. Incorporation of cross-linked structure into the hydrocarbon based PEM system has been reported to fabricate the PEMs showing both high proton conductivity and outstanding physicochemical stability. This study focused on the various cross-linking strategies to the preparation of cross-linked PEMs based on hydrocarbon polymers with ion conducting groups for application in PEMFCs.

고분자 전해질 막 연료전지(polymer electrolyte membrane fuel cell, PEMFC)는 환경오염물질 배출이 없는 친환경 에너지 변환 장치로 주목을 받고 있다. PEMFC의 구성요소 중 고분자 전해질 막(polymer electrolyte membrane, PEM)은 음극에서 발생되는 수소이온을 양극으로 전달하는 역할과 동시에 분리막으로써 연료의 투과를 차단하는 역할을 수행하는 핵심 소재이다. 대표적으로 Nafion®과 같은 과불소화계 고분자 전해질 막이 상용화 되어있지만 높은 단가 및 분해 시 환경오염물질이 배출되는 단점이 존재하여, 이를 대체할 탄화수소계 고분자를 활용한 전해질 막 개발에 관한 연구들이 수행되고 있다. 높은 수소이온 전도도를 가지며 동시에 우수한 물리·화학적 안정성을 갖는 탄화수소계 고분자 기반 전해질 막을 개발하기 위해 가교 구조가 도입된 전해질 막을 개발하는 연구들이 보고되고 있다. 본 총설은 가교 전해질 막을 제조하기 위해 이온교환 작용기가 도입된 탄화수소계 고분자를 활용하여 다양한 종류의 가교 전해질 막을 제조하는 방법에 대해 논하였다.

References

  1. E. Commissie, "A Roadmap for moving to a competitive low carbon economy in 2050", Europese Commissie, Brussel (2011).
  2. V. UNFCCC, "Adoption of the Paris agreement", Proposal by the President (2015).
  3. S. Bose, T. Kuila, T. X. H. Nguyen, N. H. Kim, K.-T. Lau, and J. H. Lee, "Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges", Progress in Polymer Science, 36, 813 (2011). https://doi.org/10.1016/j.progpolymsci.2011.01.003
  4. W. Daud, R. Rosli, E. Majlan, S. Hamid, R. Mohamed, and T. Husaini, "PEM fuel cell system control: A review", Renew. Energy, 113, 620 (2017). https://doi.org/10.1016/j.renene.2017.06.027
  5. M. Zaton, J. Roziere, and D. Jones, "Current understanding of chemical degradation mechanisms of perfluorosulfonic acid membranes and their mitigation strategies: A review", Sustain. Energy Fuels, 1, 409 (2017). https://doi.org/10.1039/C7SE00038C
  6. K. A. Mauritz and R. B. J. C. r. Moore, "State of understanding of Nafion", Phys. Chem. Chem. Phys., 104, 4535 (2004).
  7. A. Vitale, R. Bongiovanni, and B. J. C. r. Ameduri, "Fluorinated oligomers and polymers in photopolymerization", Chem. Rev., 115, 8835 (2015). https://doi.org/10.1021/acs.chemrev.5b00120
  8. D. A. Schiraldi, "Perfluorinated polymer electrolyte membrane durability", J. Macromol. Sci. Polymer Rev., 46, 315 (2006). https://doi.org/10.1080/15583720600796458
  9. F. M. Hekster, R. W. Laane, and P. De Voogt, "Environmental and toxicity effects of perfluoroalkylated substances", Rev. Environ. Contam. Toxicol., 99 (2003).
  10. J. Serpico, S. Ehrenberg, J. Fontanella, X. Jiao, D. Perahia, K. McGrady, E. Sanders, G. Kellogg, and G. J. M. Wnek, "Transport and structural studies of sulfonated styrene-ethylene copolymer membranes", Macromolecules, 35, 5916 (2002). https://doi.org/10.1021/ma020251n
  11. C. Genies, R. Mercier, B. Sillion, N. Cornet, G. Gebel, and M. J. P. Pineri, "Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes", Polymer, 42, 359 (2001). https://doi.org/10.1016/S0032-3861(00)00384-0
  12. K. Miyatake and A. S. J. J. o. P. S. P. A. P. C. Hay, "Synthesis and properties of poly(arylene ether) s bearing sulfonic acid groups on pendant phenyl rings", Polym. Chem., 39, 3211 (2001). https://doi.org/10.1002/pola.1303
  13. K. Kim, P. Heo, T. Ko, and J.-C. Lee, "Semi-interpenetrating network electrolyte membranes based on sulfonated poly(arylene ether sulfone) for fuel cells at high temperature and low humidity conditions", Electrochem. Commun., 48, 44 (2014). https://doi.org/10.1016/j.elecom.2014.08.012
  14. K. Kim, J. Bae, M.-Y. Lim, P. Heo, S.-W. Choi, H.-H. Kwon, and J.-C. Lee, "Enhanced physical stability and chemical durability of sulfonated poly (arylene ether sulfone) composite membranes having antioxidant grafted graphene oxide for polymer electrolyte membrane fuel cell applications", J. Membr. Sci., 525, 125 (2017). https://doi.org/10.1016/j.memsci.2016.10.038
  15. S. Kaliaguine, S. Mikhailenko, K. Wang, P. Xing, G. Robertson, and M. Guiver, "Properties of SPEEK based PEMs for fuel cell application", Catal. Today, 82, 213 (2003). https://doi.org/10.1016/S0920-5861(03)00235-9
  16. S. D. Mikhailenko, K. Wang, S. Kaliaguine, P. Xing, G. P. Robertson, and M. D. Guiver, "Proton conducting membranes based on Cross-linked sulfonated poly(ether ether ketone)(SPEEK)", J. Membr. Sci., 233, 93 (2004). https://doi.org/10.1016/j.memsci.2004.01.004
  17. Y. Woo, S. Y. Oh, Y. S. Kang, and B. Jung, "Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell", J. Membr. Sci., 220, 31 (2003). https://doi.org/10.1016/S0376-7388(03)00185-6
  18. Y. Yin, O. Yamada, K. Tanaka, and K.-I. Okamoto, "On the development of naphthalene-based sulfonated polyimide membranes for fuel cell applications", Polym. J., 38, 197 (2006). https://doi.org/10.1295/polymj.38.197
  19. C. H. Park, C. H. Lee, M. D. Guiver, and Y. M. Lee, "Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs)", Prog. Polym. Sci., 36, 1443 (2011). https://doi.org/10.1016/j.progpolymsci.2011.06.001
  20. K. B. Wiles, C. M. de Diego, J. de Abajo, and J. E. McGrath, "Directly copolymerized partially fluorinated disulfonated poly(arylene ether sulfone) random copolymers for PEM fuel cell systems: Synthesis, fabrication and characterization of membranes and membrane-electrode assemblies for fuel cell applications", J. Membr. Sci., 294, 22 (2007). https://doi.org/10.1016/j.memsci.2007.01.036
  21. B. Yang, A. J. E. Manthiram, and S. S. Letters, "Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cells", Electrochem. Solid-State Lett., 6, A229 (2003). https://doi.org/10.1149/1.1613073
  22. K. Kim, S.-K. Kim, J. O. Park, S.-W. Choi, K.-H. Kim, T. Ko, C. Pak, and J.-C. Lee, "Highly reinforced pore-filling membranes based on sulfonated poly(arylene ether sulfone)s for high-temperature/low-humidity polymer electrolyte membrane fuel cells", J. Membr. Sci., 537, 11 (2017). https://doi.org/10.1016/j.memsci.2017.05.014
  23. L. Li and Y. J. J. o. m. s. Wang, "Sulfonated polyethersulfone Cardo membranes for direct methanol fuel cell", J. Membr. Sci., 246, 167 (2005). https://doi.org/10.1016/j.memsci.2004.08.015
  24. H. Hou, M. L. Di Vona, and P. Knauth, "Building bridges: Crosslinking of sulfonated aromatic polymers - A review", J. Membr. Sci., 423-424, 113 (2012). https://doi.org/10.1016/j.memsci.2012.07.038
  25. H. Li, G. Zhang, J. Wu, C. Zhao, Q. Jia, C. M. Lew, L. Zhang, Y. Zhang, M. Han, and J. J. J. o. P. S. Zhu, "A facile approach to prepare self-crosslinkable sulfonated poly(ether ether ketone) membranes for direct methanol fuel cells", J. Power Sources, 195, 8061 (2010).
  26. J. Han, K. Kim, J. Kim, S. Kim, S.-W. Choi, H. Lee, J.-j. Kim, T.-H. Kim, Y.-E. Sung, and J.-C. Lee, "Cross-linked highly sulfonated poly(arylene ether sulfone) membranes prepared by in-situ casting and thiol-ene click reaction for fuel cell application", J. Membr. Sci., 579, 70 (2019). https://doi.org/10.1016/j.memsci.2019.02.048
  27. M. Kido, Z. Hu, T. Ogo, Y. Suto, K.-i. Okamoto, and J. Fang, "Novel preparation method of crosslinked sulfonated polyimide membranes for fuel cell application", Chem. Lett., 36, 272 (2007). https://doi.org/10.1246/cl.2007.272
  28. M. Li, G. Zhang, S. Xu, C. Zhao, M. Han, L. Zhang, H. Jiang, Z. Liu, and H. Na, "Cross-linked polyelectrolyte for direct methanol fuel cells applications based on a novel sulfonated cross-linker", J. Power Sources, 255, 101 (2014). https://doi.org/10.1016/j.jpowsour.2013.12.116
  29. S.-K. Kim, T.-H. Kim, T. Ko, and J.-C. Lee, "Crosslinked poly(2,5-benzimidazole) consisting of wholly aromatic groups for high-temperature PEM fuel cell applications", J. Membr. Sci., 373, 80 (2011). https://doi.org/10.1016/j.memsci.2011.02.039
  30. K. Si, R. Wycisk, D. Dong, K. Cooper, M. Rodgers, P. Brooker, D. Slattery, and M. Litt, "Rigid-rod poly(phenylenesulfonic acid) proton exchange membranes with cross-linkable biphenyl groups for fuel cell applications", Macromolecules, 46, 422 (2013). https://doi.org/10.1021/ma301875n
  31. K. Nakabayashi, T. Higashihara, and M. Ueda, "Polymer electrolyte membranes based on crosslinked highly sulfonated multiblock copoly(ether sulfone)s", Macromolecules, 43, 5756 (2010).
  32. M. Schuster, K.-D. Kreuer, H. T. Andersen, and J. J. M. Maier, "Sulfonated poly(phenylene sulfone) polymers as hydrolytically and thermooxidatively stable proton conducting ionomers", Macromolecules, 40, 598 (2007). https://doi.org/10.1021/ma062324z
  33. C. Zhang, X. Guo, J. Fang, H. Xu, M. Yuan, and B. Chen, "A new and facile approach for the preparation of Cross-linked sulfonated poly(sulfide sulfone) membranes for fuel cell application", J. Power Sources, 170, 42 (2007). https://doi.org/10.1016/j.jpowsour.2007.03.065
  34. M. Song, X. Lu, Z. Li, G. Liu, X. Yin, and Y. Wang, "Compatible ionic crosslinking composite membranes based on SPEEK and PBI for high temperature proton exchange membranes", Int. J. Hydrog. Energy, 41, 12069 (2016). https://doi.org/10.1016/j.ijhydene.2016.05.227
  35. H. Zhang, X. Li, C. Zhao, T. Fu, Y. Shi, and H. Na, "Composite membranes based on highly sulfonated PEEK and PBI: Morphology characteristics and performance", J. Membr. Sci., 308, 66 (2008). https://doi.org/10.1016/j.memsci.2007.09.045
  36. J. Wang, C. Zhao, G. Zhang, Y. Zhang, J. Ni, W. Ma, and H. J. J. o. M. S. Na, "Novel covalentionically Cross-linked membranes with extremely low water swelling and methanol crossover for direct methanol fuel cell applications", J. Membr. Sci., 363, 112 (2010).
  37. S. Zhong, X. Cui, H. Cai, T. Fu, C. Zhao, and H. J. J. o. P. S. Na, "Crosslinked sulfonated poly (ether ether ketone) proton exchange membranes for direct methanol fuel cell applications", J. Power Sources, 164, 65 (2007). https://doi.org/10.1016/j.jpowsour.2006.10.077
  38. K.-S. Lee, M.-H. Jeong, Y.-J. Kim, S.-B. Lee, and J.-S. Lee, "Fluorinated aromatic polyether ionomers containing perfluorocyclobutyl as cross-link groups for fuel cell applications", Chem. Mater., 24, 1443 (2012). https://doi.org/10.1021/cm203539m
  39. K. D. Papadimitriou, F. Paloukis, S. G. Neophytides, and J. K. J. M. Kallitsis, "Cross-linking of side chain unsaturated aromatic polyethers for high temperature polymer electrolyte membrane fuel cell applications", Macromolecules, 44, 4942 (2011). https://doi.org/10.1021/ma200351z
  40. M. Han, G. Zhang, K. Shao, H. Li, Y. Zhang, M. Li, S. Wang, and H. J. J. o. M. C. Na, "Carboxyl-terminated benzimidazole-assisted Cross-linked sulfonated poly(ether ether ketone)s for highly conductive PEM with low water uptake and methanol permeability", J. Mater. Chem., 20, 3246 (2010).
  41. C. Liu, Z. Wu, Y. Xu, S. Zhang, C. Gong, Y. Tang, D. Sun, H. Wei, and C. Shen, "Facile onestep fabrication of sulfonated polyhedral oligomeric silsesquioxane Cross-linked poly(ether ether ketone) for proton exchange membranes", Polym. Chem., 9, 3624 (2018). https://doi.org/10.1039/c8py00650d
  42. Y. Zhang, X. Fei, G. Zhang, H. Li, K. Shao, J. Zhu, C. Zhao, Z. Liu, M. Han, and H. Na, "Preparation and properties of epoxy-based Cross-linked sulfonated poly(arylene ether ketone) proton exchange membrane for direct methanol fuel cell applications", Int. J. Hydrog. Energy, 35, 6409 (2010).
  43. C. Zhao, H. Lin, M. Han, and H. Na, "Covalently Cross-linked proton exchange membranes based on sulfonated poly(arylene ether ketone) and polybenzimidazole oligomer", J. Membr. Sci., 353, 10 (2010).
  44. D. S. Phu, C. H. Lee, C. H. Park, S. Y. Lee, and Y. M. Lee, "Synthesis of crosslinked sulfonated poly(phenylene sulfide sulfone nitrile) for direct methanol fuel cell applications", Macromol. Rapid. Commun., 30, 64 (2009). https://doi.org/10.1002/marc.200800496
  45. H. Li, G. Zhang, J. Wu, C. Zhao, Y. Zhang, K. Shao, M. Han, H. Lin, J. Zhu, and H. Na, "A novel sulfonated poly(ether ether ketone) and Cross-linked membranes for fuel cells", J. Power Sources, 195, 6443 (2010).
  46. W. Ma, C. Zhao, J. Yang, J. Ni, S. Wang, N. Zhang, H. Lin, J. Wang, G. Zhang, Q. Li, and H. Na, "Cross-linked aromatic cationic polymer electrolytes with enhanced stability for high temperature fuel cell applications", Energy Environ. Sci., 5, (2012).
  47. J.-y. Park, T.-H. Kim, H. J. Kim, J.-H. Choi, and Y. T. Hong, "Crosslinked sulfonated poly(arylene ether sulfone) membranes for fuel cell application", Int. J. Hydrog. Energy, 37, 2603 (2012). https://doi.org/10.1016/j.ijhydene.2011.10.122
  48. K. Kim, P. Heo, W. Hwang, J. H. Baik, Y. E. Sung, and J. C. Lee, "Cross-linked sulfonated poly (arylene ether sulfone) containing a flexible and hydrophobic bishydroxy perfluoropolyether crosslinker for high-performance proton exchange membrane", ACS Appl. Mater. Interfaces, 10, 21788 (2018). https://doi.org/10.1021/acsami.8b05139
  49. T. Ko, K. Kim, B.-K. Jung, S.-H. Cha, S.-K. Kim, and J.-C. Lee, "Cross-linked sulfonated poly(arylene ether sulfone) membranes formed by in situ casting and click reaction for applications in fuel cells", Macromolecules, 48, 1104 (2015). https://doi.org/10.1021/ma5021616
  50. M. Han, G. Zhang, M. Li, S. Wang, Y. Zhang, H. Li, C. M. Lew, and H. Na, "Considerations of the morphology in the design of proton exchange membranes: Cross-linked sulfonated poly(ether ether ketone)s using a new carboxyl-terminated benzimidazole as the cross-linker for PEMFCs", Int. J. Hydrog. Energy, 36, 2197 (2011). https://doi.org/10.1016/j.ijhydene.2010.11.065
  51. M. Li, G. Zhang, H. Zuo, M. Han, C. Zhao, H. Jiang, Z. Liu, L. Zhang, and H. J. J. o. m. s. Na, "End-group Cross-linked polybenzimidazole blend membranes for high temperature proton exchange membrane", J. Membr. Sci., 423, 495 (2012). https://doi.org/10.1016/j.memsci.2012.08.058
  52. J. Kim, K. Kim, J. Han, H. Lee, H. Kim, S. Kim, Y. E. Sung, and J. C. J. J. o. P. S. P. A. P. C. Lee, "End group Cross-linked membranes based on highly sulfonated poly(arylene ether sulfone) with vinyl functionalized graphene oxide as a cross-linker and a filler for proton exchange membrane fuel cell application", J. Polym. Sci., 58, 3456, (2020)
  53. S. Y. Lee, N. R. Kang, D. W. Shin, C. H. Lee, K.-S. Lee, M. D. Guiver, N. Li, Y. M. J. E. Lee, and E. Science, "Morphological transformation during cross-linking of a highly sulfonated poly(phenylene sulfide nitrile) random copolymer", Energy Environ. Sci., 5, 9795 (2012). https://doi.org/10.1039/c2ee21992a
  54. W. H. Lee, K. H. Lee, D. W. Shin, D. S. Hwang, N. R. Kang, D. H. Cho, J. H. Kim, and Y. M. J. J. o. P. S. Lee, "Dually Cross-linked polymer electrolyte membranes for direct methanol fuel cells", J. Power Sources, 282, 211 (2015). https://doi.org/10.1016/j.jpowsour.2015.01.191
  55. D. W. Shin, S. Y. Lee, N. R. Kang, K. H. Lee, D. H. Cho, M. J. Lee, Y. M. Lee, and K. J. I. j. o. h. e. Do Suh, "Effect of crosslinking on the durability and electrochemical performance of sulfonated aromatic polymer membranes at elevated temperatures", Int. J. Hydrog. Energy, 39, 4459 (2014). https://doi.org/10.1016/j.ijhydene.2014.01.006
  56. N. R. Kang, S. Y. Lee, D. W. Shin, D. S. Hwang, K. H. Lee, D. H. Cho, J. H. Kim, and Y. M. Lee, "Effect of end-group cross-linking on transport properties of sulfonated poly(phenylene sulfide nitrile)s for proton exchange membranes", J. Power Sources, 307, 834 (2016). https://doi.org/10.1016/j.jpowsour.2016.01.051
  57. K. Kim, P. Heo, J. Han, J. Kim, and J.-C. Lee, "End-group Cross-linked sulfonated poly(arylene ether sulfone) via thiolene click reaction for high-performance proton exchange membrane", J. Power Sources, 401, 20 (2018). https://doi.org/10.1016/j.jpowsour.2018.08.053
  58. K.-S. Lee, M.-H. Jeong, J.-P. Lee, and J.-S. Lee, "End-group Cross-linked poly(arylene ether) for proton exchange membranes", Macromolecules, 42, 584 (2009). https://doi.org/10.1021/ma802233j