DOI QR코드

DOI QR Code

PEBAX/ZIF-8과 PEBAX/amineZIF-8 복합막을 통한 CO2와 N2의 기체투과 특성

Gas Permeation Characteristics of CO2 and N2 through PEBAX/ZIF-8 and PEBAX/amineZIF-8 Composite Membranes

  • 홍세령 (상명대학교 계당교양교육원) ;
  • 오소영 (상명대학교 화공신소재학과) ;
  • 이현경 (상명대학교 화공신소재학과)
  • Hong, Se Ryeong (Kyedang College of General Educations, Sangmyung University) ;
  • O, So Young (Department of Chemical Engineering and Materials Science, Sangmyung University) ;
  • Lee, Hyun Kyung (Department of Chemical Engineering and Materials Science, Sangmyung University)
  • 투고 : 2020.10.07
  • 심사 : 2020.11.24
  • 발행 : 2020.12.31

초록

본 연구에서는 ZIF-8와 amine으로 개질된 ZIF-8 (amineZIF-8) 함량에 따른 PEBAX/ZIF-8, PEBAX/amineZIF-8 복합막을 제조하고, 각 복합막에 대해 N2와 CO2의 기체투과 성질을 조사하였다. N2와 CO2 투과도는 PEBAX/ZIF-8 복합막의 경우 ZIF-8 함량이 많아질수록 증가하였고, PEBAX/amineZIF-8 복합막의 경우 amineZIF-8 20 wt%까지 증가하다가 그 이상의 함량에서는 감소하였다. CO2/N2 이상 선택도는 PEBAX/ZIF-8과 PEBAX/amineZIF-8 복합막 모두 ZIF-8과 amineZIF-8의 함량 20 wt%까지는 증가하다가 그 이후 감소하였고, PEBAX/amineZIF-8 복합막의 경우는 감소폭이 적었다. AmineZIF-8 20 wt%에서 CO2/N2 이상 선택도가 가장 높았던 이유는 amine 개질로 PEBAX와 amineZIF-8 사이에서의 호환성을 높이고, amineZIF-8이 PEBAX 내에 고르게 분산되면서 3.4 Å 기공 크기를 갖고 있는 ZIF-8 효과와 CO2에 친화성이 있는 amine의 효과를 가장 크게 받았기 때문으로 보인다.

In this study, PEBAX/ZIF-8 and PEBAX/amineZIF-8 composite membranes were prepared according to the content of zeolitic imidazolate framework-8 (ZIF-8), amine-modified ZIF-8 (amineZIF-8), the gas permeability properties of N2 and CO2 were investigated for each composite membrane. In the case of the PEBAX/ZIF-8 composite membrane, the permeability of N2 and CO2 increased as the ZIF-8 content increased, and in the case of the PEBAX/amineZIF-8 composite membrane, the permeability of N2 and CO2 increased up to 20 wt% of amineZIF-8, but decreased at the higher content. CO2/N2 ideal selectivity increased up to 20 wt% of ZIF-8 and amineZIF-8 contents in both PEBAX/ZIF-8 and PEBAX/ amineZIF-8 composite membranes, and then decreased thereafter, in the case of PEBAX/amineZIF-8 composite membrane was less decreased. The reason for the highest CO2/N2 ideal selectivity at 20 wt% of amineZIF-8 is that amine modification improved the compatibility between PEBAX and amineZIF-8, and thus amineZIF-8 was evenly dispersed in PEBAX, resulting in the greatest effect of the porous ZIF-8 with a 3.4 Å pore size and the amine with affinity for CO2.

키워드

참고문헌

  1. Y. Shen and A. C. Lua, "Preparation and characterization of mixed matrix membranes based on PVDF and three inorganic filler(fumed nonporous silica, zeolite 4A and mesoporous MCM-41) for gas separation", Chem. Eng. J., 192, 201 (2012). https://doi.org/10.1016/j.cej.2012.03.066
  2. R. S. Murali, A. F. Ismail, M. A. Rahman, and S. Sridhar, "Mixed matrix membranes of pebax-1657 loaded with 4A zeolite for gaseous separations", Sep. Purif. Technol., 129, 1 (2014). https://doi.org/10.1016/j.seppur.2014.03.017
  3. H. W. Yoo, H. D. Lee, and H. B. Park, "Gas transport behavior of modified carbon nanotubes/hydrogel composite membranes", Membr. J., 23(5), 375 (2013).
  4. A. F. Ismail, N. H. Rahim, A. Mustafa, T. Matsuura, B. C. Ng, S. Abdullah, and S. A. Hashemifard, "Gas separation performance of polyethersulfone/multi-walled carbon nanotubes mixed matrix membranes", Sep. Purif. Technol., 80, 20 (2011). https://doi.org/10.1016/j.seppur.2011.03.031
  5. H. R. Song, S. E. Nam, Y. K. Hwang, J. S. Chang, U. H. Lee, and Y. I. Park, "Preparation and characterization of mixed-matrix membranes containing MIL-100(Fe) for gas separation", Membr. J., 23(6), 432 (2013). https://doi.org/10.14579/MEMBRANE_JOURNAL.2013.23.6.432
  6. J. H. Lee and J. S. Kim, "Research trends of metal-organic framework membranes: Fabrication methods and gas separation applications", Membr. J., 25(6), 465 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.6.465
  7. K. S. Park, Z. Ni, A. P. Cote, J. Y. Choi, R. D. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe, and O. M. Yaghi, "Exceptional chemical and thermal stability of zeolitic imidazolate frameworks", P. Natl. Acad. Sci., 103, 10186 (2006). https://doi.org/10.1073/pnas.0602439103
  8. V. Nafisi and M. B. Hagg, "Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture", J. Membr. Sci., 459, 244 (2014). https://doi.org/10.1016/j.memsci.2014.02.002
  9. N. Hara, M. Yoshimune, H. Negishi, K. Haraya, S. Hara, and T. Yamaguchi, "Diffusive separation of propylene/propane with ZIF-8 membranes", J. Membr. Sci., 450, 215 (2014). https://doi.org/10.1016/j.memsci.2013.09.012
  10. C. Zhang, Y. Dai, J. R. Johnson, O. Karvan, and W. J. Koros, "High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations", J. Membr. Sci., 389, 34 (2012). https://doi.org/10.1016/j.memsci.2011.10.003
  11. L. Xu, L. Xiang, C. Wang, J. Yu, L. Zhang, and Y. Pan, "Enhanced permeation performance of polyether-polyamide block copolymer membranes through incorporating ZIF-8 nanocrystals", Chin. J. Chem. Eng., 25, 882 (2017). https://doi.org/10.1016/j.cjche.2016.11.007
  12. A. Jomekian, R. M. Behbahani, T. Mohammadi, and A. Kargari, "CO2/CH4 separation by high performance co-casted ZIF-8/Pebax 1657/PES mixed matrix membrane", J. Nat. Gas Sci. Eng., 31, 562 (2016). https://doi.org/10.1016/j.jngse.2016.03.067
  13. M. J. C. Ordonez, K. J. Balkus, J. P. Ferraris, and I. H. Musselman, "Molecular sieving realized with ZIF-8/Matrimid mixed-matrix membranes", J. Membr. Sci., 361, 28 (2010). https://doi.org/10.1016/j.memsci.2010.06.017
  14. Z. Zhang, S. Xian, Q. Xia, H. Wang, Z. Li, and J. Li, "Enhancement of CO2 adsorption and CO2/N2 selectivity on ZIF-8 via postsynthetic modification", AlChE J., 59(6), 2195 (2013). https://doi.org/10.1002/aic.13970
  15. K. Y. Cho, H. An, X. H. Do, K. Choi, H. G. Yoon, H. K. Jeong, J. S. Lee, and K. Y. Baek, "Synthesis of amine-functionalized ZIF-8 with 3-amino-1,2,4-triazole by postsythetic modification for efficient CO2-selective adsorbents ad beyond", J. Mater. Chem. A., 6, 18912 (2018). https://doi.org/10.1039/C8TA02797H
  16. H. R. Amedi and M. Aghajani, "Aminosilane-functionalized ZIF-8/PEBA mixed matrix membrane for gas separation application", Microporous Mesoporous Mater., 247, 124 (2017). https://doi.org/10.1016/j.micromeso.2017.04.001
  17. H. B. Kim, M. W. Lee, W. K. Park, S. J. Lee, H. K. Lee, and S. H. Lee, "Permeation properties of single gases (N2, O2, SF6, CF4) through PDMS and PEBAX membranes", Membr. J., 22, 201 (2012).
  18. C. H. Hyung, C. D. Park, K. H. Kim, J. W. Rhim, T. S. Hwang, and H. K. Lee, "A study on the SO2/CO2/N2 mixed gas separation using polyetherimide/PEBAX/PEG composite hollow fiber membrane", Membr. J., 22, 404 (2012).
  19. H. J. Kim, "Gas permeation properties of carbon dioxide and methane for PEBAXTM/TEOS hybrid membranes", Korean Chem. Eng. Res., 49, 460 (2011). https://doi.org/10.9713/kcer.2011.49.4.460
  20. V. I. Bonder, B. D. Freeman, and I. Pinnau, "Gas transport properties of poly(ether-b-amide) segmented block copolymers", J. Polym. Sci. Part B: Polym. Phys., 38, 2051 (2000). https://doi.org/10.1002/1099-0488(20000801)38:15<2051::AID-POLB100>3.0.CO;2-D
  21. V. Barbi, S. S. Funari, R. Gehrke, N. Scharnagl, and N. Stribeck, "SAXS and the gas transport in polyether-block-polyamide copolymer membraes", Macromolecules, 36, 749 (2003). https://doi.org/10.1021/ma0213403
  22. S. H Lee, M. Z. Kim, C. H Cho, and M. H Han, "CO2 permeation behavior of pebax-2533 plate membranes prepared from 1-propanol/n-buthanol mixed solvents", Membr. J., 23, 367 (2013).
  23. I. U. Khan, M. H. D. Othman, A. Jilani, A. F. Ismail, H. Hashim, J. Jaafar, M. A. Rahman, and G. U. Rehman, "Economical, environmental friendly synthesis, characterization for the production of zeolitic imidazolate framework-8 (ZIF-8) nanoparticles with enhanced CO2 adsorption", Arab. J. Chem., 11, 1072 (2018). https://doi.org/10.1016/j.arabjc.2018.07.012
  24. N. A. H. M. Nordin, A. F. Ismail, A. Mustafa, P. S. Goh, D. Rana, and T. Matsuura, "Aqueous room temperature synthesis of zeolitic imidazole framework 8 (ZIF-8) with various concetrations of triethylamine", RSC Adv., 4, 33292 (2014). https://doi.org/10.1039/C4RA03593C
  25. R. Ding, W. Zheng, K. Yang, Y. Dai, X. Ruan, X. Yan, and G. He, "Amino-functional ZIF-8 nanocrystals by microemulsion based mixed linker strategy and the enhanced CO2/N2 separation", Sep. Purif. Technol., 236, 1 (2020).
  26. S. Wang, J. Cui, S. Zhang, X. Xie, and W. Xia, "Enhancement thermal stability and CO2 adsorption property of ZIF-8 by pre-modification with polyaniline", Mater. Res. Express, 7, 1 (2020).
  27. S. Meshkat, S. Kaliaguine, and D. Rodrigue, "Mixed matrix membranes based on amine and non-amine MIL-53(Al) in Pebax MH-1657 for CO2 separation", Sep. Purif. Technol., 200, 177 (2018). https://doi.org/10.1016/j.seppur.2018.02.038
  28. A. Ehsani and M. Pakizeh, "Synthesis, characterization and gas permeation study of ZIF-11/Pebax2533 mixed matrix membranes", J. Taiwan Inst. Chem. Eng., 66, 414 (2016). https://doi.org/10.1016/j.jtice.2016.07.005
  29. T. Li, Y. C. Pan, K. V. Peinemann, and Z. P. Lai, "Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers", J. Membr. Sci., 425, 235 (2013). https://doi.org/10.1016/j.memsci.2012.09.006
  30. D. Liu, Y. Wu, Q. Xia, Z. Li, and H. Xi, "Experimental and molecular simulation studies of CO2 adsorption on zeolitic imidazolate frameworks: ZIF-8 and amine-modified ZIF-8", Adsorption, 19, 25 (2013). https://doi.org/10.1007/s10450-012-9407-1
  31. M. M. Rahman, V. Filiz, S. Shishatskiy, C. Abetz, S. Neumann, and S. Bolmer, "Pebax® with PEG functionalized POSS as nanocomposite membranes for CO2 separation", J. Membr. Sci., 437, 286 (2013). https://doi.org/10.1016/j.memsci.2013.03.001