DOI QR코드

DOI QR Code

(PIM-co-Ellagic Acid)-based Copolymer Membranes for High Performance CO2 Separation

(PIM-co-Ellagic Acid)-기반의 이산화탄소 분리막의 개발

  • Hossain, Iqubal (Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University) ;
  • Husna, Asmaul (Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University) ;
  • Kim, Dongyoung (Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University) ;
  • Kim, Tae-Hyun (Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University)
  • Received : 2020.11.13
  • Accepted : 2020.12.10
  • Published : 2020.12.31

Abstract

Random copolymers made of both 'polymer of intrinsic microporosity (PIM-1)' and Ellagic acid were prepared for the first time by a facile one-step polycondensation reaction. By combining the highly porous and contorted structure of PIM (polymers with intrinsic microporosity) and flat-type hydrophilic ellagic acid, the membranes obtained from these random copolymers [(PIM-co-EA)-x] showed high CO2 permeability (> 4516 Barrer) with high CO2/N2 (> 23~26) and CO2/CH4 (> 18~19) selectivity, that surpassed the Robeson upper bound (2008) for both pairs of the gas mixture. Incorporation of flat-type ellagic acid into the PIM-1 not only enhances the gas permeability by disturbing the kinked structure of PIM-1 but also increases the selectivity of CO2 over N2 and CH4, due to an increase of rigidity and polarity in the resultant copolymer membranes.

(PIM-1)과 ellagic acid로 만든 랜덤형 공중합체가 간단한 방법으로 합성되었으며, 이산화탄소 분리막에 대한 적용 가능성에 대해서 연구하였다. 이 공중합체의 경우 PIM (polymers with intrinsic microporosity) 고분자의 미세 기공 구조에 기인한 높은 기체 투과도와 평면 구조와 친수성을 갖는 ellagic acid에 기인한 높은 이산화탄소에 대한 선택성에 의해 우수한 이산화탄소 기체 분리 성능을 나타내었다. 즉, 이산화탄소에 대한 투과도 4516 Barrer와 CO2/N2 (> 23~26) 및 CO2/CH4 (>18~19)의 높은 선택성으로 두 쌍의 가스 혼합물에 대해 Robeson 상한(2008)을 초과한 결과를 나타내었다. 이와 같이 PIM-1에 평면구조를 갖는 ellagic acid을 혼입하면 PIM-1의 꼬인 구조를 방해하여 기체 투과성을 향상 시킬 뿐만 아니라 공중합체의 강성과 극성이 증가하여 N2 및 CH4에 대한 CO2의 선택성을 증가시키는 결과를 확인하였다.

Keywords

Acknowledgement

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by Ministry of Education (NRF2017R1A6A1A06015181).

References

  1. S. Wang, X. Li, H. Wu, Z. Tian, Q. Xin, G. He, D. Peng, S. Chen, Y. Yin, Z. Jiang, and M. D. Guiver, "Advances in high permeability polymer-based membrane materials for CO2 separations", Energy Environ. Sci., 9, 1863 (2016). https://doi.org/10.1039/c6ee00811a
  2. A. B. Rao and E. S. Rubin, "A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control", Environ. Sci. Technol., 36, 4467 (2002). https://doi.org/10.1021/es0158861
  3. I. Hossain, S. Y. Nam, C. Rizzuto, G. Barbieri, E. Tocci, and T.-H. Kim, "PIM-polyimide multiblock copolymer-based membranes with enhanced CO2 separation performances", J. Memb. Sci., 574, 270 (2019). https://doi.org/10.1016/j.memsci.2018.12.084
  4. N. Du, H. B. Park, M. M. Dal-Cin, and M. D. Guiver, "Advances in high permeability polymeric membrane materials for CO2 separations", Energy Environ. Sci., 5, 7306 (2012). https://doi.org/10.1039/C1EE02668B
  5. I. Hossain, D. Kim, A. Z. Al Munsur, J. M. Roh, H. B. Park, and T.-H. Kim, "PEG/PPG-PDMS-based cross-linked copolymer membranes prepared by ROMP and in situ membrane casting for CO2 sep aration: An approach to endow rubbery materials with properties of rigid polymers", ACS Appl. Mater. Interfaces, 12, 27286 (2020). https://doi.org/10.1021/acsami.0c06926
  6. H. You, I. Hossain, and T.-H. Kim, "Piperazinium-mediated crosslinked polyimide-polydimethylsiloxane (PI-PDMS) copolymer membranes: The effect of PDMS content on CO2 separation", RSC Adv., 8, 1328 (2018). https://doi.org/10.1039/C7RA10949K
  7. D. Kim, I. Hossain, Y. Kim, O. Choi, and T.-H. Kim, "PEG/PPG-PDMS-adamantane-based crosslinked terpolymer using the ROMP technique to prepare a highly permeable and CO2-selective polymer membrane", Polymers, 12, 1 (2020).
  8. I. Hossain, A. Z. Al Munsur, O. Choi, and T.-H. Kim, "Bisimidazolium PEG-mediated crosslinked 6FDA-durene polyimide membranes for CO2 separation", Sep. Purif. Technol., 224, 180 (2019). https://doi.org/10.1016/j.seppur.2019.05.014
  9. J. H. Park, D. J. Kim, and S. Y. Nam, "Characterization and preparation of PEG-polyimide copolymer asymmetric flat sheet membranes for carbon dioxide separation", Membr. J., 25, 547 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.6.547
  10. L. M. Robeson, "Correlation of separation factor versus permeability for polymeric membranes", J. Memb. Sci., 62, 165 (1991). https://doi.org/10.1016/0376-7388(91)80060-J
  11. L. M. Robeson, "The upper bound revisited", J. Memb. Sci., 320, 390 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
  12. S. J. Moon, H. J. Min, N. U. Kim, and J. H. Kim, "Fabrication of polymeric blend membranes using PBEM-POEM comb copolymer and poly(ethylene glycol) for CO2 capture", Membr. J., 29, 223 (2019). https://doi.org/10.14579/membrane_journal.2019.29.4.223
  13. S. Y. Yoo and H. B. Park, "Membrane-based direct air capture technologies", Membr. J., 30, 173 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.3.173
  14. P. M. Budd, K. J. Msayib, C. E. Tattershall, B. S. Ghanem, K. J. Reynolds, N. B. McKeown, and D. Fritsch, "Gas separation membranes from polymers of intrinsic microporosity", J. Memb. Sci., 251, 263 (2005). https://doi.org/10.1016/j.memsci.2005.01.009
  15. N. Prasetya, N. F. Himma, P. D. Sutrisna, I G. Wenten, and B. P. Ladewig, "A review on emerging organic-containing microporous material membranes for carbon capture and separation", Chem. Eng. J., 391, 123575 (2020). https://doi.org/10.1016/j.cej.2019.123575
  16. C. L. Staiger, S. J. Pas, A. J. Hill, and C. J. Cornelius, "Gas separation, free volume distribution, and physical aging of a highly microporous spirobisindane polymer", Chem. Mater., 20, 2606 (2008). https://doi.org/10.1021/cm071722t
  17. N. Du, H. B. Park, G. P. Robertson, M. M. Dal-Cin, T. Visser, L. Scoles, and M. D. Guiver, "Polymer nanosieve membranes for CO2-capture applications", Nat. Mater., 10, 372 (2011). https://doi.org/10.1038/nmat2989
  18. N. B. McKeown, "Polymers of intrinsic microporosity", ISRN Mater. Sci., 2012, 1 (2012). https://doi.org/10.5402/2012/513986
  19. N. B. McKeown and P. M. Budd, "Exploitation of intrinsic microporosity in polymer-based materials", Macromolecules, 43, 5163 (2010). https://doi.org/10.1021/ma1006396
  20. C. Ma and J. J. Urban, "Polymers of intrinsic microporosity (PIMs) gas separation membranes: A mini review", Proc. Nat. Res. Soc., 2, 02002 (2018). https://doi.org/10.11605/j.pnrs.201802002
  21. W. H. Lee, J. G. Seong, X. Hu, and Y. M. Lee, "Recent progress in microporous polymers from thermally rearranged polymers and polymers of intrinsic microporosity for membrane gas separation: Pushing performance limits and revisiting trade-off lines", J. Polym. Sci., 1 (2020).
  22. B. Comesana-Gandara, J. Chen, C. G. Bezzu, M. Carta, I. Rose, M. C. Ferrari, E. Esposito, A. Fuoco, J. C. Jansen, and N. B. McKeown, "Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity", Energy Environ. Sci., 12, 2733 (2019). https://doi.org/10.1039/c9ee01384a
  23. X. Chen, Z. Zhang, L. Wu, X. Liu, S. Xu, J.E. Efome, X. Zhang, and N. Li, "Polymers of intrinsic microporosity having bulky substitutes and cross-linking for gas separation membranes", ACS Appl. Polym. Mater., 2, 987 (2020). https://doi.org/10.1021/acsapm.9b01193
  24. J. W. Jeon, D. G. Kim, E. H. Sohn, Y. Yoo, Y. S. Kim, B. G. Kim, and J. C. Lee, "Highly carboxylate-functionalized polymers of intrinsic microporosity for CO2-selective polymer membranes", Macromolecules, 50, 8019 (2017). https://doi.org/10.1021/acs.macromol.7b01332
  25. S. Neumann, G. Bengtson, D. Meis, and V. Filiz, "Thermal cross linking of novel azide modified polymers of intrinsic microporosity-effect of distribution and the gas separation performance", Polymers, 11, 1241 (2019). https://doi.org/10.3390/polym11081241
  26. N. Du, M. M. Dal-Cin, G. P. Robertson, and M. D. Guiver, "Decarboxylation-induced cross-linking of polymers of intrinsic microporosity (PIMs) for membrane gas separation", Macromolecules, 45, 5134 (2012). https://doi.org/10.1021/ma300751s
  27. K. Halder, S. Neumann, G. Bengtson, M. M. Khan, V. Filiz, and V. Abetz, "Polymers of intrinsic microporosity postmodified by vinyl groups for membrane applications", Macromolecules, 51, 7309 (2018). https://doi.org/10.1021/acs.macromol.8b01252
  28. I. Hossain, A. Z. Al Munsur, and T.-H. Kim, "A facile synthesis of (PIM-polyimide)-(6FDA-durenepolyimide) copolymer as novel polymer membranes for CO2 separation", Membranes, 9, 113 (2019). https://doi.org/10.3390/membranes9090113
  29. F. M. Mady and M. A. Shaker, "Enhanced anticancer activity and oral bioavailability of ellagic acid through encapsulation in biodegradable polymeric nanoparticles", Int. J. Nanomedicine, 12, 7405 (2017). https://doi.org/10.2147/IJN.S147740
  30. E. M. Daniel, A. S. Krupnick, Y. H. Heur, J. A. Blinzler, R. W. Nims, and G. D. Stoner, "Extraction, stability, and quantitation of ellagic acid in various fruits and nuts", J. Food Compos. Anal., 2, 338 (1989). https://doi.org/10.1016/0889-1575(89)90005-7
  31. I. Kang, T. Buckner, N. F. Shay, L. Gu, and S. Chung, "Improvements in metabolic health with consumption of ellagic acid and subsequent conversion into urolithins: Evidence and mechanisms", Adv. Nutr., 7, 961 (2016). https://doi.org/10.3945/an.116.012575
  32. J. L. Maas, G. J. Galletta, and G. D. Stoner, "Ellagic acid, an anticarcinogen in fruits, especially in strawberries: A review", HortScience., 26, 10 (1991). https://doi.org/10.21273/HORTSCI.26.1.10
  33. M. Z. Hussein, S. H. Al Ali, Z. Zainal, and M. N. Hakim, "Development of antiproliferative nanohybrid compound with controlled release property using ellagic acid as the active agent", Int. J. Nanomedicine, 6 , 1373 (2011).
  34. T. Sakaguchi and T. Hashimoto, "Synthesis of poly (diphenylacetylene)s bearing various polar groups and their gas permeability", Polym. J., 46, 391 (2014). https://doi.org/10.1038/pj.2014.16
  35. J. Liu, Y. Xiao, K. S. Liao, and T. S. Chung, "Highly permeable and aging resistant 3D architecture from polymers of intrinsic microporosity incorporated with beta-cyclodextrin", J. Memb. Sci., 523, 92 (2017). https://doi.org/10.1016/j.memsci.2016.10.001
  36. X. M. Wu, Q. G. Zhang, P. J. Lin, Y. Qu, A. M. Zhu, and Q. L. Liu, "Towards enhanced CO2 selectivity of the PIM-1 membrane by blending with polyethylene glycol", J. Memb. Sci., 493, 147 (2015). https://doi.org/10.1016/j.memsci.2015.05.077
  37. J. Ahn, W. J. Chung, I. Pinnau, J. Song, N. Du, G. P. Robertson, and M. D. Guiver, "Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity (PIM-1)", J. Memb. Sci., 346, 280 (2010). https://doi.org/10.1016/j.memsci.2009.09.047
  38. S. Thomas, I. Pinnau, N. Du, and M. D. Guiver, "Pure- and mixed-gas permeation properties of a microporous spirobisindane-based ladder polymer (PIM-1)", J. Memb. Sci., 333, 125 (2009). https://doi.org/10.1016/j.memsci.2009.02.003