Acknowledgement
This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by Ministry of Education (NRF2017R1A6A1A06015181).
References
- S. Wang, X. Li, H. Wu, Z. Tian, Q. Xin, G. He, D. Peng, S. Chen, Y. Yin, Z. Jiang, and M. D. Guiver, "Advances in high permeability polymer-based membrane materials for CO2 separations", Energy Environ. Sci., 9, 1863 (2016). https://doi.org/10.1039/c6ee00811a
- A. B. Rao and E. S. Rubin, "A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control", Environ. Sci. Technol., 36, 4467 (2002). https://doi.org/10.1021/es0158861
- I. Hossain, S. Y. Nam, C. Rizzuto, G. Barbieri, E. Tocci, and T.-H. Kim, "PIM-polyimide multiblock copolymer-based membranes with enhanced CO2 separation performances", J. Memb. Sci., 574, 270 (2019). https://doi.org/10.1016/j.memsci.2018.12.084
- N. Du, H. B. Park, M. M. Dal-Cin, and M. D. Guiver, "Advances in high permeability polymeric membrane materials for CO2 separations", Energy Environ. Sci., 5, 7306 (2012). https://doi.org/10.1039/C1EE02668B
- I. Hossain, D. Kim, A. Z. Al Munsur, J. M. Roh, H. B. Park, and T.-H. Kim, "PEG/PPG-PDMS-based cross-linked copolymer membranes prepared by ROMP and in situ membrane casting for CO2 sep aration: An approach to endow rubbery materials with properties of rigid polymers", ACS Appl. Mater. Interfaces, 12, 27286 (2020). https://doi.org/10.1021/acsami.0c06926
- H. You, I. Hossain, and T.-H. Kim, "Piperazinium-mediated crosslinked polyimide-polydimethylsiloxane (PI-PDMS) copolymer membranes: The effect of PDMS content on CO2 separation", RSC Adv., 8, 1328 (2018). https://doi.org/10.1039/C7RA10949K
- D. Kim, I. Hossain, Y. Kim, O. Choi, and T.-H. Kim, "PEG/PPG-PDMS-adamantane-based crosslinked terpolymer using the ROMP technique to prepare a highly permeable and CO2-selective polymer membrane", Polymers, 12, 1 (2020).
- I. Hossain, A. Z. Al Munsur, O. Choi, and T.-H. Kim, "Bisimidazolium PEG-mediated crosslinked 6FDA-durene polyimide membranes for CO2 separation", Sep. Purif. Technol., 224, 180 (2019). https://doi.org/10.1016/j.seppur.2019.05.014
- J. H. Park, D. J. Kim, and S. Y. Nam, "Characterization and preparation of PEG-polyimide copolymer asymmetric flat sheet membranes for carbon dioxide separation", Membr. J., 25, 547 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.6.547
- L. M. Robeson, "Correlation of separation factor versus permeability for polymeric membranes", J. Memb. Sci., 62, 165 (1991). https://doi.org/10.1016/0376-7388(91)80060-J
- L. M. Robeson, "The upper bound revisited", J. Memb. Sci., 320, 390 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
- S. J. Moon, H. J. Min, N. U. Kim, and J. H. Kim, "Fabrication of polymeric blend membranes using PBEM-POEM comb copolymer and poly(ethylene glycol) for CO2 capture", Membr. J., 29, 223 (2019). https://doi.org/10.14579/membrane_journal.2019.29.4.223
- S. Y. Yoo and H. B. Park, "Membrane-based direct air capture technologies", Membr. J., 30, 173 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.3.173
- P. M. Budd, K. J. Msayib, C. E. Tattershall, B. S. Ghanem, K. J. Reynolds, N. B. McKeown, and D. Fritsch, "Gas separation membranes from polymers of intrinsic microporosity", J. Memb. Sci., 251, 263 (2005). https://doi.org/10.1016/j.memsci.2005.01.009
- N. Prasetya, N. F. Himma, P. D. Sutrisna, I G. Wenten, and B. P. Ladewig, "A review on emerging organic-containing microporous material membranes for carbon capture and separation", Chem. Eng. J., 391, 123575 (2020). https://doi.org/10.1016/j.cej.2019.123575
- C. L. Staiger, S. J. Pas, A. J. Hill, and C. J. Cornelius, "Gas separation, free volume distribution, and physical aging of a highly microporous spirobisindane polymer", Chem. Mater., 20, 2606 (2008). https://doi.org/10.1021/cm071722t
- N. Du, H. B. Park, G. P. Robertson, M. M. Dal-Cin, T. Visser, L. Scoles, and M. D. Guiver, "Polymer nanosieve membranes for CO2-capture applications", Nat. Mater., 10, 372 (2011). https://doi.org/10.1038/nmat2989
- N. B. McKeown, "Polymers of intrinsic microporosity", ISRN Mater. Sci., 2012, 1 (2012). https://doi.org/10.5402/2012/513986
- N. B. McKeown and P. M. Budd, "Exploitation of intrinsic microporosity in polymer-based materials", Macromolecules, 43, 5163 (2010). https://doi.org/10.1021/ma1006396
- C. Ma and J. J. Urban, "Polymers of intrinsic microporosity (PIMs) gas separation membranes: A mini review", Proc. Nat. Res. Soc., 2, 02002 (2018). https://doi.org/10.11605/j.pnrs.201802002
- W. H. Lee, J. G. Seong, X. Hu, and Y. M. Lee, "Recent progress in microporous polymers from thermally rearranged polymers and polymers of intrinsic microporosity for membrane gas separation: Pushing performance limits and revisiting trade-off lines", J. Polym. Sci., 1 (2020).
- B. Comesana-Gandara, J. Chen, C. G. Bezzu, M. Carta, I. Rose, M. C. Ferrari, E. Esposito, A. Fuoco, J. C. Jansen, and N. B. McKeown, "Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity", Energy Environ. Sci., 12, 2733 (2019). https://doi.org/10.1039/c9ee01384a
- X. Chen, Z. Zhang, L. Wu, X. Liu, S. Xu, J.E. Efome, X. Zhang, and N. Li, "Polymers of intrinsic microporosity having bulky substitutes and cross-linking for gas separation membranes", ACS Appl. Polym. Mater., 2, 987 (2020). https://doi.org/10.1021/acsapm.9b01193
- J. W. Jeon, D. G. Kim, E. H. Sohn, Y. Yoo, Y. S. Kim, B. G. Kim, and J. C. Lee, "Highly carboxylate-functionalized polymers of intrinsic microporosity for CO2-selective polymer membranes", Macromolecules, 50, 8019 (2017). https://doi.org/10.1021/acs.macromol.7b01332
- S. Neumann, G. Bengtson, D. Meis, and V. Filiz, "Thermal cross linking of novel azide modified polymers of intrinsic microporosity-effect of distribution and the gas separation performance", Polymers, 11, 1241 (2019). https://doi.org/10.3390/polym11081241
- N. Du, M. M. Dal-Cin, G. P. Robertson, and M. D. Guiver, "Decarboxylation-induced cross-linking of polymers of intrinsic microporosity (PIMs) for membrane gas separation", Macromolecules, 45, 5134 (2012). https://doi.org/10.1021/ma300751s
- K. Halder, S. Neumann, G. Bengtson, M. M. Khan, V. Filiz, and V. Abetz, "Polymers of intrinsic microporosity postmodified by vinyl groups for membrane applications", Macromolecules, 51, 7309 (2018). https://doi.org/10.1021/acs.macromol.8b01252
- I. Hossain, A. Z. Al Munsur, and T.-H. Kim, "A facile synthesis of (PIM-polyimide)-(6FDA-durenepolyimide) copolymer as novel polymer membranes for CO2 separation", Membranes, 9, 113 (2019). https://doi.org/10.3390/membranes9090113
- F. M. Mady and M. A. Shaker, "Enhanced anticancer activity and oral bioavailability of ellagic acid through encapsulation in biodegradable polymeric nanoparticles", Int. J. Nanomedicine, 12, 7405 (2017). https://doi.org/10.2147/IJN.S147740
- E. M. Daniel, A. S. Krupnick, Y. H. Heur, J. A. Blinzler, R. W. Nims, and G. D. Stoner, "Extraction, stability, and quantitation of ellagic acid in various fruits and nuts", J. Food Compos. Anal., 2, 338 (1989). https://doi.org/10.1016/0889-1575(89)90005-7
- I. Kang, T. Buckner, N. F. Shay, L. Gu, and S. Chung, "Improvements in metabolic health with consumption of ellagic acid and subsequent conversion into urolithins: Evidence and mechanisms", Adv. Nutr., 7, 961 (2016). https://doi.org/10.3945/an.116.012575
- J. L. Maas, G. J. Galletta, and G. D. Stoner, "Ellagic acid, an anticarcinogen in fruits, especially in strawberries: A review", HortScience., 26, 10 (1991). https://doi.org/10.21273/HORTSCI.26.1.10
- M. Z. Hussein, S. H. Al Ali, Z. Zainal, and M. N. Hakim, "Development of antiproliferative nanohybrid compound with controlled release property using ellagic acid as the active agent", Int. J. Nanomedicine, 6 , 1373 (2011).
- T. Sakaguchi and T. Hashimoto, "Synthesis of poly (diphenylacetylene)s bearing various polar groups and their gas permeability", Polym. J., 46, 391 (2014). https://doi.org/10.1038/pj.2014.16
- J. Liu, Y. Xiao, K. S. Liao, and T. S. Chung, "Highly permeable and aging resistant 3D architecture from polymers of intrinsic microporosity incorporated with beta-cyclodextrin", J. Memb. Sci., 523, 92 (2017). https://doi.org/10.1016/j.memsci.2016.10.001
- X. M. Wu, Q. G. Zhang, P. J. Lin, Y. Qu, A. M. Zhu, and Q. L. Liu, "Towards enhanced CO2 selectivity of the PIM-1 membrane by blending with polyethylene glycol", J. Memb. Sci., 493, 147 (2015). https://doi.org/10.1016/j.memsci.2015.05.077
- J. Ahn, W. J. Chung, I. Pinnau, J. Song, N. Du, G. P. Robertson, and M. D. Guiver, "Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity (PIM-1)", J. Memb. Sci., 346, 280 (2010). https://doi.org/10.1016/j.memsci.2009.09.047
- S. Thomas, I. Pinnau, N. Du, and M. D. Guiver, "Pure- and mixed-gas permeation properties of a microporous spirobisindane-based ladder polymer (PIM-1)", J. Memb. Sci., 333, 125 (2009). https://doi.org/10.1016/j.memsci.2009.02.003