DOI QR코드

DOI QR Code

수전해용 이오노머 분자동역학 모델 개발

Development of Molecular Dynamics Model for Water Electrolysis Ionomer

  • 강호성 (경남과학기술대학교(GNTECH) 에너지공학과) ;
  • 박치훈 (경남과학기술대학교(GNTECH) 에너지공학과) ;
  • 이창현 (단국대학교 에너지공학과)
  • Kang, Hoseong (Department of Energy Engineering, Gyeongnam National University of Science and Technology (GNTECH)) ;
  • Park, Chi Hoon (Department of Energy Engineering, Gyeongnam National University of Science and Technology (GNTECH)) ;
  • Lee, Chang Hyun (Energy Engineering Department, Dankook University)
  • 투고 : 2020.12.07
  • 심사 : 2020.12.10
  • 발행 : 2020.12.31

초록

본 연구에서는 수전해용 ionomer의 분자동역학 전산모사 모델 제작을 위하여, 과량의 물 분자가 존재하는 수전해 시스템의 특성을 반영한 ionomer 모델을 제작한 후, 기존 연료전지용 전해질막 전산모사 조건에 맞춰 제작한 ionomer 모델과 비교하였다. 최종적으로 얻어진 모델은 과불소계 ionomer의 중요 특징 중 하나인 명확한 상분리 및 수화채널이 관찰되었으며, 과량의 물 및 높은 운전 온도 조건에서도 물에 녹지 않고 안정된 구조를 나타내었다. 제조된 ionomer 모델에서는 과량의 물분자로 인한 이온 희석 효과로 이온 전달 성능 감소가 나타났으며, 반대로 수소 기체의 투과는 더 증가할 것으로 분석되었다. 따라서 이러한 수전해 시스템의 특성을 반영한 수전해용 ionomer 분자 구조 설계 전략이 필요하고, 분자동역학 전산모사 연구 시에도 이를 감안한 수전해용 ionomer 모델 제작이 필요하다.

In this study, in order to build a molecular dynamics simulation model of ionomer for water electrolysis, an ionomer model that reflects the characteristics of a water electrolysis system in which excess water molecules exist was compared to an ionomer built according to the conventional simulation method of the fuel cells membrane. The final ionomer MD models have a strong phase separation and water channel that is one of the important characteristics of the perfluorinated ionomer, and are stable and water-insoluble under excessive water and high temperature conditions. In the ionomer MD models built in this study, the excess water molecules decrease an ion conductivity due to the dilution of ions, but increase a hydrogen diffusivity. Therefore, it is necessary to design the molecular structure of ionomers for water electrolysis in experimental studies as well as molecular dynamics studies according to the characteristics of the water electrolysis system reported in this study.

키워드

참고문헌

  1. P. J. Egan and M. Mullin, "Recent improvement and projected worsening of weather in the United States", Nature, 532, 357 (2016). https://doi.org/10.1038/nature17441
  2. J. Watson, "Bring climate change back from the future", Nature, 534, 437 (2016). https://doi.org/10.1038/534437a
  3. R. A. Betts, C. D. Jones, J. R. Knight, R. F. Keeling, and J. J. Kennedy, "El Nino and a record CO2 rise", Nat. Clim. Change., 6, 806 (2016). https://doi.org/10.1038/nclimate3063
  4. S. L. Lewis, "The Paris Agreement has solved a troubling problem", Nature, 532, 283 (2016). https://doi.org/10.1038/532283a
  5. K. S. Im, T. Y. Son, K. Kim, J. F. Kim, and S. Y. Nam, "Research and development trend of electrolyte membrane applicable to water electrolysis system", Appl. Chem. Eng., 30, 389 (2019). https://doi.org/10.14478/ACE.2019.1052
  6. H. Choi, C. Rhyu, S. Lee, C. Byun, and G. Hwang, "Study on anion exchange membrane for the alkaline electrolysis", Trans. Korean. Hydrog. New Energy Soc., 22, 184 (2011). https://doi.org/10.7316/KHNES.2011.22.2.184
  7. G.-J. Hwang, K.-S. Kang, H.-J. Han, and J.-W. Kim, "Technology trend for water electrolysis hydrogen production by the patent analysis", Trans. Korean. Hydrog. New Energy Soc., 18, 95 (2007).
  8. K. E. Ayers, E. B. Anderson, C. Capuano, B. Carter, L. Dalton, G. Hanlon, J. Manco, and M. Niedzwiecki, "Research advances towards low cost, high efficiency PEM electrolysis", ECS Trans., 33, 3 (2010).
  9. F. ezzahra Chakik, M. Kaddami, and M. Mikou, "Effect of operating parameters on hydrogen production by electrolysis of water", Int. J. Hydrogen Energy, 42, 25550 (2017). https://doi.org/10.1016/j.ijhydene.2017.07.015
  10. M. M. Rashid, M. K. Al Mesfer, H. Naseem, and M. Danish, "Hydrogen production by water electrolysis: A review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis", Int. J. Eng. Adv. Technol., 4, 2249 (2015).
  11. C. H. Park, S. Y. Nam, and Y. T. Hong, "Molecular dynamics (MD) study of proton exchange membranes for fuel cells", Membr. J., 26, 329 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.5.329
  12. J. H. Lee and C. H. Park, "Effect of force-field types on the proton diffusivity calculation in molecular dynamics (MD) simulation", Membr. J., 27, 358 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.4.358
  13. B. Bae, E. Kim, S. Lee, and H. Lee, "Research rrends of anion exchange membranes within alkaline fuel cells", New. Renew. Ener., 11, 52 (2015). https://doi.org/10.7849/ksnre.2015.12.11.4.52
  14. H. Sun, "COMPASS: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds", J. Phys. Chem. B, 102, 7338 (1998). https://doi.org/10.1021/jp980939v
  15. H. Sun, Z. Jin, C. Yang, R. L. Akkermans, S. H. Robertson, N. A. Spenley, S. Miller, and S. M. Todd, "COMPASS II: Extended coverage for polymer and drug-like molecule databases", J. Mol. Model., 22, 47 (2016). https://doi.org/10.1007/s00894-016-2909-0
  16. H. Sun, P. Ren, and J. Fried, "The COMPASS force field: Parameterization and validation for phosphazenes", Comput. Theor. Polym. Sci., 8, 229 (1998). https://doi.org/10.1016/S1089-3156(98)00042-7
  17. H. Kang and C. H. Park, "Investigation of gas transport properties of polymeric membranes having different chain lengths via molecular dynamics (MD)", Membr. J., 28, 67 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.1.67
  18. C. H. Park, C. H. Lee, J.-Y. Sohn, H. B. Park, M. D. Guiver, and Y. M. Lee, "Phase separation and water channel formation in sulfonated block copolyimide", J. Phys. Chem. B, 114, 12036 (2010). https://doi.org/10.1021/jp105708m
  19. C. Rizzuto, A. Caravella, A. Brunetti, C. H. Park, Y. M. Lee, E. Drioli, G. Barbieri, and E. Tocci, "Sorption and diffusion of CO2/N2 in gas mixture in thermally-rearranged polymeric membranes: A molecular investigation", J. Membr. Sci., 528, 135 (2017). https://doi.org/10.1016/j.memsci.2017.01.025
  20. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, "Equation of state calculations by fast computing machines", J. Chem. Phys., 21, 1087 (1953). https://doi.org/10.1063/1.1699114
  21. H. Kang and P. Chi Hoon, "Investigation of gas transport properties of polymeric membranes having different chain lengths via molecular dynamics (MD)", Membr. J., 28, 67 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.1.67
  22. H. Lim, B. Lee, D. Yun, A. Z. Al Munsur, J. E. Chae, S. Y. Lee, H.-J. Kim, S. Y. Nam, C. H. Park, and T.-H. Kim, "Poly (2,6-dimethyl-1,4-phenylene oxide) s with various head groups: Effect of head groups on the properties of anion exchange membranes", ACS Appl. Mater. Interfaces, 10, 41279 (2018). https://doi.org/10.1021/acsami.8b13016
  23. C. Yin, Z. Wang, Y. Luo, J. Li, Y. Zhou, X. Zhang, H. Zhang, P. Fang, and C. He, "Thermal annealing on free volumes, crystallinity and proton conductivity of Nafion membranes", J. Phys. Chem. Solids, 120, 71 (2018). https://doi.org/10.1016/j.jpcs.2018.04.028
  24. J.-W. Lee, Y.-T. Yoo, and J. Y. Lee, "Characterization of Nafion nanocomposites with spheric silica, layered silicate, and amphiphilic organic molecule and their actuator application", Macromol. Res., 23, 167 (2015). https://doi.org/10.1007/s13233-015-3029-x
  25. C. H. Park, C. H. Lee, M. D. Guiver, and Y. M. Lee, "Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs)", Prog. Polym. Sci., 36, 1443 (2011). https://doi.org/10.1016/j.progpolymsci.2011.06.001
  26. S. E. Kang and C. H. Lee, "Perfluorinated sulfonic acid ionomer-PTFE pore-filling membranes for polymer electrolyte membrane fuel cells", Membr. J., 25, 171 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.171
  27. C. S. Lee, H. S. Shin, J. H. Jun, S. Y. Jung, and J. W. Rhim, "Recent development trends of cation exchange membrane materials", Membr. J., 12, 1 (2002).
  28. H. Y. Lee, H. K. Hwang, S. S. Park, S. W. Choi, and Y. G. Shul, "Nafion impregnated electrospun polyethersulfone membrane for PEMFC", Membr. J., 20, 40 (2010).
  29. C. H. Park, T.-H. Kim, S. Y. Nam, and Y. T. Hong, "Water channel morphology of non-perfluorinated hydrocarbon proton exchange membrane under a low humidifying condition", Int. J. Hydrogen Energy, 44, 2340 (2019). https://doi.org/10.1016/j.ijhydene.2018.06.154