DOI QR코드

DOI QR Code

부피가 큰 치환기를 포함하는 폴리이미드의 합성 및 프로필렌/프로판 분리특성

Propylene/Propane Separation Through Polyimides Containing Bulky Ethyl Substituents

  • 투고 : 2020.10.23
  • 심사 : 2020.12.17
  • 발행 : 2020.12.31

초록

분리막 기반 공정은 기존 공정에 비해 에너지 소비 및 환경 영향을 감소시킬 수 있는 잠재력을 갖고 있다. 분리막 공정의 성능은 분리막의 투과 특성과 직결되기 때문에, 선택도와 투과도가 우수한 새로운 분리막 소재를 개발하기 위해 많은 연구가 진행되어 왔다. 본 연구에서는 기체 투과선택성 향상을 위해 부피가 큰 에틸 치환기를 포함하는 diamine 단량체인 4,4'-methylenebis(2,6-diethylaniline) (MDEA)을 도입한 폴리이미드를 합성한 후 그 특성을 관찰하고 기체 투과 특성을 조사하였다. 이미드링 질소의 오쏘에 위치한 에틸기는 고분자 사슬의 패킹을 방해하고 사슬 강성과 고분자 사슬 간 거리를 증가시켰다. MDEA 기반 폴리이미드 분리막의 기체 투과 특성을 조사한 결과, 프로필렌/프로판 선택도 14.5와 프로필렌 투과도 7.0 barrer의 결과를 얻었다. 부피가 큰 치환기로 인해 기체 확산 길이가 증가하여 기체 투과 선택성이 높아졌음을 확인하였다. 혼합 기체 투과 결과 또한 MDEA 기반 폴리이미드 분리막이 실제 혼합 기체 공정에서 높은 선택도를 달성할 수 있다는 것을 보여준다. 이러한 MDEA 기반 폴리이미드는 우수한 투과도 및 선택도로 경제적인 프로필렌 분리의 가능성을 크게 높일 수 있다.

Membrane-based separations have the potential to reduce energy consumption and environmental impact associated with conventional processes. However, many researches have been done to develop new membrane materials with greater selectivity and permeability. Here, we report highly selective membranes by introducing bulky ethyl substituents into the polyimide. The ethyl group in the ortho position to the imide nitrogen interferes the chain packing and increases chain stiffness and the distance between the polymer chains. The polyimide membranes were synthesized from various aromatic dianhydrides and 4,4'-methylenebis(2,6-diethylaniline) (MDEA). The synthesized membranes with increased gas diffusion length due to bulky substituents showed improved propylene/propane (C3H6/C3H8) selectivity. Single gas permeation showed high C3H6/C3H8 selectivity of 14.5, and C3H6 permeability of 7.0 barrer was found in MDEA-polyimide. Mixed-gas permeation results also demonstrate that MDEA-polyimide can achieve high selectivity in mixed-gas environment. Furthermore, this approach could significantly increase the feasibility of economic propylene separation compared to conventional polymer materials.

키워드

참고문헌

  1. R. W. Baker, "Future directions of membrane gas separation technology", Ind. Eng. Chem. Res., 41, 1393 (2002). https://doi.org/10.1021/ie0108088
  2. M. Galizia, W. S. Chi, Z. P. Smith, T. C. Merkel, R. W. Baker, and B. D. Freeman, "50th anniversary perspective: Polymers and mixed matrix membranes for gas and vapor separation: A review and prospective opportunities", Macromolecules, 50, 7809 (2017). https://doi.org/10.1021/acs.macromol.7b01718
  3. R. W. Baker, "Membrane Technology and Applications", John Wiley & Sons (2012).
  4. H. B. Park, J. Kamcev, L. M. Robeson, M. Elimelech, and B. D. Freeman, "Maximizing the right stuff: The trade-off between membrane permeability and selectivity", Science, 356 (2017).
  5. W. J. Koros and G. Fleming, "Membrane-based gas separation", J. Membr. Sci., 83, 1 (1993). https://doi.org/10.1016/0376-7388(93)80013-N
  6. K. Xie, Q. Fu, G. G. Qiao, and P. A. Webley, "Recent progress on fabrication methods of polymeric thin film gas separation membranes for CO2 capture", J. Membr. Sci., 572, 38 (2019). https://doi.org/10.1016/j.memsci.2018.10.049
  7. K. Vanherck, G. Koeckelberghs, and I. F. J. Vankelecom, "Crosslinking polyimides for membrane applications: A review", Prog. Polym. Sci., 38, 874 (2013). https://doi.org/10.1016/j.progpolymsci.2012.11.001
  8. W. Sotoyama, S. Tatsuura, and T. Yoshimura, "Electro-optic side-chain polyimide system with large optical nonlinearity and high thermal stability", Appl. Phys. Lett., 64, 2197 (1994). https://doi.org/10.1063/1.111671
  9. K. Tanaka, H. Kita, M. Okano, and K.-I. Okamoto, "Permeability and permselectivity of gases in fluorinated and non-fluorinated polyimides", Polymer, 33, 585 (1992). https://doi.org/10.1016/0032-3861(92)90736-G
  10. M. Hellums, W. Koros, G. Husk, and D. Paul, "Fluorinated polycarbonates for gas separation applications", J. Membr. Sci., 46, 93 (1989). https://doi.org/10.1016/S0376-7388(00)81173-4
  11. T. L. Grubb, V. L. Ulery, T. J. Smith, G. L. Tullos, H. Yagci, L. J. Mathias, and M. Langsam, "Highly soluble polyimides from sterically hindered diamines", Polymer, 40, 4279 (1999). https://doi.org/10.1016/S0032-3861(98)00663-6
  12. L. Y. Wang, P. L. Chang, and C. L. Cheng, "Structural effects of pendant groups on thermal and electrical properties of polyimides", J. Appl. Polym. Sci., 100, 4672 (2006). https://doi.org/10.1002/app.22673
  13. Y. Zhuang, J. G. Seong, Y. S. Do, W. H. Lee, M. J. Lee, Z. Cui, A. E. Lozano, M. D. Guiver, and Y. M. Lee, "Soluble, microporous, troger's base copolyimides with tunable membrane performance for gas separation", ChemComm., 52, 3817 (2016).
  14. S. So Ra, H. Sang Hoon, and K. Jeong-Hoon, "Synthesis and characterization of soluble co-polyimides for biogas purification", Membr. J., 25, 231 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.3.231
  15. L. Jung Moo, K. Deuk Ju, J. Moon Ki, L. Myung Gun, P. Chi Hoon, and N. Sang Yong, "Synthesis of highly selective polyimide material and comparison of gas permeability by molecular dynamics study", Membr. J., 25, 162 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.162
  16. C. Zhang, P. Li, and B. Cao, "Effects of the side groups of the spirobichroman-based diamines on the chain packing and gas separation properties of the polyimides", J. Membr. Sci., 530, 176 (2017). https://doi.org/10.1016/j.memsci.2017.02.030
  17. C. Y. Park, E. H. Kim, J. H. Kim, Y. M. Lee, and J. H. Kim, "Novel semi-alicyclic polyimide membranes: Synthesis, characterization, and gas separation properties", Polymer, 151, 325 (2018). https://doi.org/10.1016/j.polymer.2018.07.052
  18. E. H. Kim, C. Y. Park, and J. H. Kim, "Gas transport properties of soluble polyimides containing alicyclic dianhydride", Membr. J., 24, 100 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.2.100
  19. A. Hayek, G. O. Yahaya, A. Alsamah, A. A. Alghannam, S. A. Jutaily, and I. Mokhtari, "Pure - and sour mixed-gas transport properties of 4,4'-methylenebis(2,6-diethylaniline)-based copolyimide membranes", Polymer, 166, 184 (2019). https://doi.org/10.1016/j.polymer.2019.01.056
  20. K. Tanaka, M. Okano, H. Toshino, H. Kita, and K. I. Okamoto, "Effect of methyl substituents on permeability and permselectivity of gases in polyimides prepared from methyl-substituted phenylenediamines", J. Polym. Sci. B Polym. Phys., 30, 907 (1992). https://doi.org/10.1002/polb.1992.090300813
  21. C. Y. Soo, H. J. Jo, Y. M. Lee, J. R. Quay, and M. K. Murphy, "Effect of the chemical structure of various diamines on the gas separation of thermally rearranged poly(benzoxazole-co-imide) (TR-PBO-co-I) membranes", J. Membr. Sci., 444, 365 (2013). https://doi.org/10.1016/j.memsci.2013.05.056
  22. H. Sanaeepur, A. E. Amooghin, S. Bandehali, A. Moghadassi, T. Matsuura, and B. Van der Bruggen, "Polyimides in membrane gas separation: Monomer's molecular design and structural engineering", Prog. Polym. Sci., 91, 80 (2019). https://doi.org/10.1016/j.progpolymsci.2019.02.001
  23. M. Barikani, N. Fazeli, and M. Barikani, "Study on thermal properties of polyurethane-urea elastomers prepared with different dianiline chain extenders", J. Polym. Eng., 33, 87 (2013). https://doi.org/10.1515/polyeng-2012-0137
  24. T. Voelker, H. Althaus, and A. Schmidt, "4,4'-methylene-bis-(3-chloro-2,6-diethylaniline)-m-cdea - A new chain-extending agent for cast PU-elastomers", J. Elastomers Plast., 20, 36 (1988). https://doi.org/10.1177/009524438802000104
  25. L. Meynie, F. Fenouillot, and J. P. Pascault, "Influence of the gel on the morphology of a thermoset polymerized into a thermoplastic matrix, under shear", Polymer, 45, 5101 (2004). https://doi.org/10.1016/j.polymer.2004.05.058
  26. J. Y. Park and D. R. Paul, "Correlation and prediction of gas permeability in glassy polymer membrane materials via a modified free volume based group contribution method", J. Membr. Sci., 125, 23 (1997). https://doi.org/10.1016/S0376-7388(96)00061-0
  27. A. Bondi, "Van der waals volumes and radii", J. Phys. Chem., 68, 441 (1964). https://doi.org/10.1021/j100785a001
  28. Y. Zhuang, J. G. Seong, Y. S. Do, H. J. Jo, Z. Cui, J. Lee, Y. M. Lee, and M. D. Guiver, "Intrinsically microporous soluble polyimides incorporating trö ger's base for membrane gas separation", Macromolecules, 47, 3254 (2014). https://doi.org/10.1021/ma5007073
  29. J. G. Wijmans and R. W. Baker, "The solution-diffusion model: A review", J. Membr. Sci., 107, 1 (1995). https://doi.org/10.1016/0376-7388(95)00102-I
  30. X. Ma, S. Williams, X. Wei, J. Kniep, and Y. Lin, "Propylene/propane mixture separation characteristics and stability of carbon molecular sieve membranes", Ind. Eng. Chem. Res., 54, 9824 (2015). https://doi.org/10.1021/acs.iecr.5b02721
  31. C. Staudt-Bickel and W. J. Koros, "Olefin/paraffin gas separations with 6FDA-based polyimide membranes", J. Membr. Sci., 170, 205 (2000). https://doi.org/10.1016/S0376-7388(99)00351-8
  32. R. L. Burns and W. J. Koros, "Defining the challenges for C3H6/C3H8 separation using polymeric membranes", J. Membr. Sci., 211, 299 (2003). https://doi.org/10.1016/S0376-7388(02)00430-1
  33. C. Zhang, Y. Dai, J. R. Johnson, O. Karvan, and W. J. Koros, "High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations", J. Membr. Sci., 389, 34 (2012). https://doi.org/10.1016/j.memsci.2011.10.003
  34. M. Das and W. J. Koros, "Performance of 6FDA-6FpDA polyimide for propylene/propane separations", J. Membr. Sci., 365, 399 (2010). https://doi.org/10.1016/j.memsci.2010.09.029
  35. R. Swaidan, B. Ghanem, E. Litwiller, and I. Pinnau, "Effects of hydroxyl-functionalization and sub-tg thermal annealing on high pressure pure-and mixed-gas CO2/CH4 separation by polyimide membranes based on 6fda and triptycene-containing dianhydrides", J. Membr. Sci., 475, 571 (2015). https://doi.org/10.1016/j.memsci.2014.10.046
  36. R. J. Swaidan, X. Ma, E. Litwiller, and I. Pinnau, "Enhanced propylene/propane separation by thermal annealing of an intrinsically microporous hydroxyl-functionalized polyimide membrane", J. Membr. Sci., 495, 235 (2015). https://doi.org/10.1016/j.memsci.2015.08.015
  37. F. Moghadam, T. H. Lee, I. Park, and H. B. Park, "Thermally annealed polyimide-based mixed matrix membrane containing ZIF-67 decorated porous graphene oxide nanosheets with enhanced propylene/ propane selectivity", J. Membr. Sci., 603, 118019 (2020). https://doi.org/10.1016/j.memsci.2020.118019
  38. M. L. Zhang, L. M. Deng, D. X. Xiang, B. Cao, S. S. Hosseini, and P. Li, "Approaches to suppress CO2-induced plasticization of polyimide membranes in gas separation applications", Processes, 7, 51 (2019). https://doi.org/10.3390/pr7010051
  39. K. Tanaka, A. Taguchi, J. Hao, H. Kita, and K. Okamoto, "Permeation and separation properties of polyimide membranes to olefins and paraffins", J. Membr. Sci., 121, 197 (1996). https://doi.org/10.1016/S0376-7388(96)00182-2