DOI QR코드

DOI QR Code

Effects of the Reactive Flame-Retardant 3-(Hydroxyphenylphosphinyl)-Propanoic Acid Content on the Flame Retardancy of Epoxy Resins

반응성 난연제 3-HPP의 함량이 에폭시 수지의 난연성에 미치는 영향

  • Lee, Yong-Hun (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Ye, Hyun-Ho (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Lee, Young-Hee (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Kim, Il-Jin (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Lee, Dong-Jin (Korea Institute of Footwear and Leather Technology (KIFLT)) ;
  • Kim, Jung-Soo (Korea Institute of Footwear and Leather Technology (KIFLT)) ;
  • Lim, Hyung Mi (Korea Institute of Ceramic Engineering and Technology (KICET)) ;
  • Mun, So Youn (Korea Institute of Ceramic Engineering and Technology (KICET)) ;
  • Kim, Han-Do (Department of Organic Material Science and Engineering, Pusan National University)
  • 이용훈 (부산대학교 유기소재시스템공학과) ;
  • 예현호 (부산대학교 유기소재시스템공학과) ;
  • 이영희 (부산대학교 유기소재시스템공학과) ;
  • 김일진 (부산대학교 유기소재시스템공학과) ;
  • 이동진 (한국신발피혁연구원) ;
  • 김정수 (한국신발피혁연구원) ;
  • 임형미 (한국세라믹연구원) ;
  • 문소윤 (한국세라믹연구원) ;
  • 김한도 (부산대학교 유기소재시스템공학과)
  • Received : 2020.11.04
  • Accepted : 2020.12.04
  • Published : 2020.12.31

Abstract

Flame retardant epoxy resins with various phosphorus contents (0, 1, 2, and 3 wt%) were prepared by reacting reactive-type flame retardant (hydroxyphenylphosphinyl-propanoic acid) with epoxy prepolymer (diglycidyl ether of bisphenol A, YD-128) and curing with 4,4'-diaminodiphenylmethane (DDM). This study focused on the effect of phosphorus content on the thermal decomposition, flame retardancy, and impact strength of cured epoxy resins (samples: P0, P1, P2, and P3; the number represents the wt% of phosphorus). As the phosphorus content increased, the thermal decomposition temperatures (T10% and Tmax) of the samples decreased, whereas the char content in the range 410-800 ℃ increased. The limiting oxygen index (LOI) value of the cured epoxy samples increased from 23.0 to 30.0% with increasing the phosphorus content from 0 to 3 wt%. As the phosphorus content increased, the peak heat release rate (PHRR) and fire growth rate (FIGRA) decreased, whereas the time to reach the PHRR increased significantly. That is, the analysis result of the cone calorimeter demonstrated that the flame retardancy of the sample greatly improved with an increase in the phosphorus content. As a result of the UL-94 V test, sample P3 showed V-0 exhibiting complete flame retardancy. The impact strength of the cured sample increased considerably with increasing phosphorous content. These results indicated that sample P3 had perfect flame retardancy and excellent impact strength; therefore, it will have high applicability as a flame retardant material.

Keywords

Acknowledgement

It was supported by a Grant from the Fundamental R&D program for Mari-time hybrid composite industrialization project (10053826, Development of core material technology based marine composites) funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea).

References

  1. H. Lee and K. Neville, "Handbook of Epoxy Resins", McGraw-Hill, New York, 1982.
  2. B. Ellis, "Chemistry and Technology of Epoxy Resins", Blackie Academic, London, 1993.
  3. S. V. Levchik and E. D. Weil, "Thermal Decomposition, Combustion and Flame-Retardancy of Epoxy Resins- A Review of the Recent Literature", Polym. Int. 2004, 53, 1901-1929. https://doi.org/10.1002/pi.1473
  4. Y. L. Liu, G. H. Hsiue, R. H. Lee, and Y. S. Chiu, "Phosphorus-Containing Epoxy for Flame Retardant. III: Using Phosphorylated Diamines as Curing Agents", J. Appl. Polym. Sci., 1997, 63, 895-901. https://doi.org/10.1002/(SICI)1097-4628(19970214)63:7<895::AID-APP9>3.0.CO;2-L
  5. W. Zhao, B. Li, M. Zu, K. Yang, and L. Lin, "Novel Intumescent Flame Retardants: Synthesis and Application in Polycarbonate", Fire Mater., 2013, 37, 530-546. https://doi.org/10.1002/fam.2145
  6. S. Levchik, A. Piotrowski, E. Weil, and Q. Yao, "New Developments in Flame Retardancy of Epoxy Resins", Polym. Degrad. Stab., 2005, 88, 57-62. https://doi.org/10.1016/j.polymdegradstab.2004.02.019
  7. M. Rakotomalala, S. Wagner, and M. Doring, "Recent Developments in Halogen Free Retardants for Epoxy Resins for Electrical and Electronic Applications", Materials, 2010, 3, 4300-4327. https://doi.org/10.3390/ma3084300
  8. R. J. Jeng, J. R. Wang, C. J. Lin, Y. S. Chiu, and W. C. Su, "Flame-Retardant Epoxy Polymers Using Phosphorus-Containing Polyalkylene Amines as Curing Agents", J. Appl. Polym. Sci., 2001, 82, 3526-3528. https://doi.org/10.1002/app.2215
  9. P. Joseph and S. Tretsiakova-Mcnally, "Reactive Modifications of Some Chain- and Step-Growth Polymers with Phosphorus-Containing Compounds: Effects on Flame Retardance- A Review ", Polym. Adv. Technol., 2011, 22, 395-406. https://doi.org/10.1002/pat.1900
  10. Y. W. Chen-Yang, H. F. Lee, and C. Y. Yuan, "A Flame-Retardant Phosphate and Cyclotriphosphazene-Containing Epoxy Resins: Synthesis and Properties", J. Polym. Sci., Part A: Polym. Chem., 2000, 38, 972-981. https://doi.org/10.1002/(SICI)1099-0518(20000315)38:6<972::AID-POLA6>3.0.CO;2-N
  11. W. Liu, R. J. Varley, and G. P. Simon, "Phosphorus-Containing Diamine for Flame Retardancy of High Functionality Epoxy Resisns. Part II. The thermal and Mechanical properties of Mixed Amine Systems", Polymer, 2006, 47, 2091-2098. https://doi.org/10.1016/j.polymer.2005.12.083
  12. L. P. Gao, D. Y. Wang, Y. Z. Wang, J. S. Wang, and B. Yang, "A Flame-Retardant Epoxy Resin Based on a Reactive Phosphorous-Containing Monomer of DODPP and its Thermal and Flame-Retardant Properties", Polym. Degrad. Stab., 2008, 93, 1308-1315. https://doi.org/10.1016/j.polymdegradstab.2008.04.004
  13. C. H. Lin and C. S. Wang, "Novel Phosphorous-Containing Epoxy Resins Part I. Synthesis and Properties", Polymer, 2001, 42, 1869-1878. https://doi.org/10.1016/S0032-3861(00)00447-X
  14. B. Perret, B. Schartel, K. StoB, M. Ciesielski, J. Diederichs, M. Doring, J. Kramer, and V. Altstadt, "Novel DOPO-Based Flame Retardants in High-Performance Carbon Fibre Epoxy Composites for Aviation", Eur. Polym. J., 2011, 47, 1081-1089. https://doi.org/10.1016/j.eurpolymj.2011.02.008
  15. S. H. Lee, S. W. Oh, Y. H. Lee, I. J. Kim, D. J. Lee, J. C. Lim, C. C. Park, and H. D. Kim, "Preparation and Properties of Flame-Retardant Epoxy Resins Containing Reactive Phosphorous Flame Retardant", J. Eng. Fiber. Fabr., 2020, 15, 1-8.
  16. C. H. Kim, D. Y. Ha, Y. H. Lee, D. J. Lee, and H. D. Kim, "Preparation and Properties of Flame Retardant Epoxy Resins Containing Phosphorous/Silicone Components", Clean Technology, 2017, 23, 378-387. https://doi.org/10.7464/KSCT.2017.23.4.378
  17. G. H. Hsiue, Y. L. Liu, and J. Tsiao, "Phosphorous-Containing Epoxy Resins for Flame Retardancy V: Synergistic Effect of Phosphorous-Silicon on Flame Retardancy", J. Appl. Polym. Sci., 2000, 78, 1-7. https://doi.org/10.1002/1097-4628(20001003)78:1<1::AID-APP10>3.0.CO;2-0
  18. A. Abbasi and A. Shakeri, "Effect of the Flame-Retardant 3-Hydroxyphenylphinyl-Propanoic Acid on the Mechanical, Thermal, and Flammability Properties of Poly(ethylene terephthalate) Nanofiber Mats", High Perform. Polym., 2019, 31, 919-927. https://doi.org/10.1177/0954008318805530
  19. L. Zhang, S. S. Kim, and J. Lee, "Flame Retardancy of Cellulose Fabrics Treated with 3-(Hydroxyphenyl Phosphinyl) Propanoic Acid", J. Korean Society Dyes and Finishers, 2008, 20, 1-6.
  20. DIN EN ISO 4589, "Plastics - Determination of buring Behavior by Oxygen Index: Part 1", Beuth Verlag, Berlin, 1999.
  21. L. Du, B. Qu, and Z. Xu, "Flammability Characteristics and Synergistic Effect of Hydrotalcite with Microencapsulated Red Phosphorous in Halogen-free Flame Retardant EVA Composite", Polym. Degrad. Stab., 2006, 91, 995-1001. https://doi.org/10.1016/j.polymdegradstab.2005.08.004
  22. C. F. Cullis and M. M. Hirschler, "Char Formation from Polyolefins. Correlations with Low-Temperature Oxygen uptake and with Flammability in the Presence of Metal-Halogen Systems", Eur. Polym. J., 1984, 20, 53-60. https://doi.org/10.1016/0014-3057(84)90222-2
  23. P. Lv, Z. Wang, K. Hu, and W. Fan, "Flammability and Thermal Degradation of Flame Retarded Polypropylene Composites Containing Melamine Phosphate and Pentaerythritol Derivatives", Polym. Degrad. Stab., 2005, 90, 523-534. https://doi.org/10.1016/j.polymdegradstab.2005.04.003
  24. H. Breulet and T. Steenhuizen, "Fire Testing of Cables: Comparison of SBI with FIPEC/Europacable Tests", Polym. Degrad. Stab., 2005, 88, 150-158. https://doi.org/10.1016/j.polymdegradstab.2004.01.031
  25. Y. W. Yan, L. Chen, R. K. Jian, S. Kong, and Y. Z. Wang, "Intumescence: An Effect Way to Flame Retardance and Smoke Suppression for Polystyrene", Polym. Degrad. Stab., 2012, 97, 1423-1431. https://doi.org/10.1016/j.polymdegradstab.2012.05.013
  26. Underwriter Laboratories, UL-94, "Tests for Flammability of Plastic Materials for Parts in Devices and Appliances", 3rd edition, Underwriter Laboratories Inc., Northbrook, 1989.
  27. P. W. Dufton, "Fire-additives and Materials", RAPRA Technology LTD., UK, 1995, pp.29-30.