DOI QR코드

DOI QR Code

Mechanical and Directional Tensile Properties of Ti2AlC and Ti2AlN Using First-principles Calculations

제1원리 계산을 이용한 Ti2AlC, Ti2AlN의 기계적 강도 및 방향별 인장특성 연구

  • Kim, Myungjae (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Seo, Minkyeong (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Kim, Chihun (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Kim, Jiwoong (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • 김명재 (숭실대학교 유기신소재파이버공학과) ;
  • 서민경 (숭실대학교 유기신소재파이버공학과) ;
  • 김치훈 (숭실대학교 유기신소재파이버공학과) ;
  • 김지웅 (숭실대학교 유기신소재파이버공학과)
  • Received : 2020.12.06
  • Accepted : 2020.12.22
  • Published : 2020.12.31

Abstract

We investigated the elastic and mechanical properties of Ti2AlC and Ti2AlN MAX phase using first principles assessments. Particularly, we focused on effects of carbon and nitrogen vacancies. To elucidate the effect, we obtained not only elastic and mechanical properties of perfect Ti2AlC and Ti2AlN phases but also the vacancy contained models. The elastic properties of Ti2AlN showed higher values than that of the Ti2AlC mainly due to relatively stable electronic bond formed between titanium and nitrogen atoms. In addition, carbon and nitrogen affected M-X covalent bond as well as M-A metallic bond. The carbon and nitrogen vacancies increased lattice parameters in normal to M-X plane direction. In contrast, lattice parameter in M-X plane direction was decreased. This implied that the vacancies influenced both M-X and M-A bonds. As a result, the elastic and mechanical properties were varied, and (100), (010) shear plane elastic anisotropy was increased with formation of carbon and nitrogen vacancy.

Keywords

Acknowledgement

이 연구는 2020년도 정부(과학기술정보통신부)의재원으로한국연구재단의지원(No. NRF-2020R1F1A1071104)과 2020년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(P0012770, 2020년 산업혁신인재성장지원사업).

References

  1. D. R. Seshadri, R. T. Li, J. E. Voos, J. R. Rowbottom, C. M. Alfes, C. A. Zorman, and C. K. Drummond, "Wearable Sensors for Monitoring the Physiological and Biochemical Profile of the Athlete", Npj Digit. Med., 2019, 2, 72-88. https://doi.org/10.1038/s41746-019-0150-9
  2. J. H. Koo, D. C. Kim, H. J. Shim, T. H. Kim, and D. H. Kim, "Flexible and Stretchable Smart Display: Materials, Fabrication, Device Design, and System Integration", Adv. Funct. Mater., 2018, 28, 35-58.
  3. J. S. Heo, J. Eom, Y. H. Kim, and S. K. Park, "Recent Progress of Textile-Based Wearable Electronics: A Comprehensive Review of Materials, Devices, and Applications", Small, 2018, 14, 3-19.
  4. C. M. Jiang, C. Wu, X. Li, Y. Yao, L. Lan, F. Zhao, Z. Ye, Y. Ying, and J. Ping, "All-electrospun Flexible Triboelectric Nanogenerator Based on Metallic MXene Nanosheets", Nano Energy, 2019, 59, 268-276. https://doi.org/10.1016/j.nanoen.2019.02.052
  5. Y. C. Dong, S. K. Mallineni, K. Maleski, H. Behlow, V. N. Mochalin, A. M. Rao, Y. Gogotsi, and R. Podila, "Metallic MXenes: A New Family of Materials for Flexible Triboelectric Nanogenerators", Nano Energy, 2018, 44, 103-110. https://doi.org/10.1016/j.nanoen.2017.11.044
  6. S. Seyedin, E. R. S. Yanza, and J. M. Razal, "Knittable Energy Storing Fiber with High Volumetric Performance Made from Predominantly MXene Nanosheets", J. Mater. Chem. A, 2017, 5, 24076-24082. https://doi.org/10.1039/C7TA08355F
  7. W. Eom, H. Shin, R. B. Ambade, S. H. Lee, K. H. Lee, D. J. Kang, and T. H. Han, "Large-scale Wet-spinning of Highly Electroconductive MXene Fibers", Nat. Commun., 2020, 11, 1-7. https://doi.org/10.1038/s41467-019-13993-7
  8. I. Ihsanullah, "Potential of MXenes in Water Desalination: Current Status and Perspectives", Nano-Micro Lett., 2020, 12, 1-20. https://doi.org/10.1007/s40820-020-0411-9
  9. C. Jiang and A. Chroneos, "Ab Initio Modeling of MAX Phase Solid Solutions Using the Special Quasirandom Structure Approach", Phys. Chem. Chem. Phys., 2018, 20, 1173-1180. https://doi.org/10.1039/C7CP07576F
  10. A. S. Ingason, M. Dahlqvist, and J. Rosen, "Magnetic MAX Phases from Theory and Experiments; A Review", J. Phys. Condens. Mat., 2016, 28, 43-60.
  11. Z. Sun, D. Music, R. Ahuja, and J. M. Schneider, "Theoretical Investigation of the Bonding and Elastic Properties of Nanolayered Ternary Nitrides", Phys. Rev. B, 2005, 71, 1-3.
  12. C. Y. Zuo and C. Zhong, "Screen the Elastic and Thermodynamic Properties of MAX Solid Solution Using DFT Procedue: Case Study on (Ti1-xVx)2AlC", Mater. Chem. Phys., 2020, 250, 1-11.
  13. M. W. Barsoum, M. Ali, and T. El-raghy, "Processing and Characterization of Ti2AlC, Ti2AlN, and Ti2AlC0.5N0.5", Metall. Mater. Trans. A-Phys. Metall. Mater., 2000, 31, 1857-1865. https://doi.org/10.1007/s11661-006-0243-3
  14. G. Kresse and J. Hafner, "Ab Initio Molecular-dynamics Simulation of the Liquid-metal-amorphous-semiconductor Transition in Germanium", Phys. Rev. B Condens Matter., 1994, 49, 14251-14269. https://doi.org/10.1103/PhysRevB.49.14251
  15. G. Kresse and J. Furthmuller, "Efficient Iterative Schemes for ab Initio Total-energy Calculations Using a Plane-wave Basis Set", Phys. Rev. B Condens Matter., 1996, 54, 11169-11186. https://doi.org/10.1103/PhysRevB.54.11169
  16. G. Kresse and J. Furthmuller, "Efficiency of Ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-wave Basis Set", Comput. Mater. Sci., 1996, 6, 15-50. https://doi.org/10.1016/0927-0256(96)00008-0
  17. J. P. Perdew, K. Burke, and M. Ernzerhof, "Perdew, Burke, and Ernzerhof Reply", Phys. Rev. Lett., 1998, 80, 891. https://doi.org/10.1103/PhysRevLett.80.891
  18. J. Kim, M. Kim, K. M. Roh, and I. Kang, "Bond Characteristics, Mechanical Properties, and High-temperature Thermal Conductivity of (Hf1-xTax)C Composites", J. Am. Ceram. Soc., 2019, 102, 6298-6308. https://doi.org/10.1111/jace.16466
  19. J. Kim and S. Kang, "Elastic and Thermo-physical Properties of TiC, TiN, and Their Intermediate Composition alloys Using ab Initio Calculations", J. Alloy Compd., 2012, 528, 20-27. https://doi.org/10.1016/j.jallcom.2012.02.124
  20. H. J. Monkhorst and J. D. Pack, "Special Points for Brillouin-zone Integrations", Phys. Rev. B, 1976, 13, 5188-5192. https://doi.org/10.1103/PhysRevB.13.5188
  21. M. A. Meyers and K. K. Chawla, "Mechanical Behavior of Materials", Cambridge University Press, 2008.
  22. P. P. Filippatos, M. A. Hadi, S.-R. G. Christopoulos, A. Kordatos, N. Kelaidis, M. E. Fitzpatrick, M. Vasilopoulou, and A. Chroneos, "312 MAX Phases: Elastic Properties and Lithiation", Materials, 2019, 12, 4098. https://doi.org/10.3390/ma12244098
  23. M. F. Cover, O. Warschkow, M. M. M. Bilek, and D. R. McKenzie, "Elastic Properties of Tin+1AlCnand Tin+1AlNnMAX phases", Adv. Eng. Mater., 2008, 10, 935-938. https://doi.org/10.1002/adem.200800109
  24. D. D. Wang, Z. H. Sun, D. X. Han, L. Liu, and L. Niu, "Ti3BN Monolayer: the MXene-like Material Predicted by First-principles Calculations", RSC Adv., 2017, 7, 11834-11839. https://doi.org/10.1039/C7RA00483D
  25. B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B. C. Hosler, L. Hultman, P. R. C. Kent, Y. Gogotsi, and M. W. Barsoum, "Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes)", ACS Nano, 2015, 9, 9507-9516. https://doi.org/10.1021/acsnano.5b03591
  26. F. Mouhat and F. X. Coudert, "Necessary and Sufficient Elastic Stability Conditions in Various Crystal Systems", Phys. Rev. B, 2014, 90, 22-26.
  27. X. H. Wang and Y. C. Zhou, "Layered Machinable and Electrically Conductive Ti2AlC and Ti3AlC2 Ceramics: a Review", J. Mater. Sci. Technol., 2010, 26, 385-416. https://doi.org/10.1016/S1005-0302(10)60064-3
  28. M. F. Cover, O. Warschkow, M. M. Bilek, and D. R. McKenzie, "A Comprehensive Survey of M(2)AX Phase Elastic Properties", J. Phys. Condens. Matter., 2009, 21, 1-9.
  29. S. E. Lofland, J. D. Hettinger, K. Harrell, and P. Finkel, "Elastic and Electronic Properties of Select M2AX Phases", Appl. Phys. Lett., 2004, 84, 1-3. https://doi.org/10.1063/1.1638628
  30. W. Voigt, "Lehrbuch der kristallphysik", 1928, pp.962-963.
  31. A. Reuss, "Berechnung der FlieBgrenze von Mischkristallen auf Grund der Plastizitatsbedingung fur Einkristalle", ZAMM - Zeitschrift fur Angewandte Mathematik und Mechanik, 1929, 9, 49-58. https://doi.org/10.1002/zamm.19290090104
  32. R. Hill, "The Elastic Behaviour of a Crystalline Aggregate", Proc. Phys. Soc. Section A, 1952, 65, 349-354. https://doi.org/10.1088/0370-1298/65/5/307
  33. A. Savin, O. Jepsen, J. Flad, O. K. Andersen, H. Preuss, and H. G. von Schnering, "Electron Localization in Solid-State Structures of the Elements: the Diamond Structure", Angewandte Chemie International Edition, 1992, 31, 187-188. https://doi.org/10.1002/anie.199201871
  34. A. JemmyCinthia, G. Sudhapriyang, and R. Rajeswarapalanichamy, and M. Santhosh, "Structural, Electronic and Elastic Properties of ZnO and CdO: A First-Principles Study", Procedia Materials Science, 2014, 5, 1034-1042. https://doi.org/10.1016/j.mspro.2014.07.394
  35. M. Roknuzzaman, M. A. Hadi, M. A. Ali, M. M. Hossain, N. Jahan, M. M. Uddin, J. A. Alarco, and K. Ostrikov, "First Hafnium-based MAX Phase in the 312 Family, Hf3AlC2: A First-principles Study", J. Alloy Compd., 2017, 727, 616-626. https://doi.org/10.1016/j.jallcom.2017.08.151
  36. H. M. Ledbetter, "Elastic Properties of Zinc: A Compilation and a Review", J. Phys. Chem. Reference Data, 1977, 6, 1181-1203. https://doi.org/10.1063/1.555564
  37. I. R. Shein and A. L. Ivanovskii, "Elastic Properties of Superconducting MAX Phases from First-principles Calculations", Physica Status Solidi (B), 2011, 248, 228-232. https://doi.org/10.1002/pssb.201046163
  38. S. I. Ranganathan and M. Ostoja-Starzewski, "Universal Elastic Anisotropy Index", Phys. Rev. Lett., 2008, 101, 1-4.
  39. Y. J. Tian, B. Xu, and Z. S. Zhao, "Microscopic Theory of Hardness and Design of Novel Superhard Crystals", Int. J. Refract. Met. H, 2012, 33, 93-106. https://doi.org/10.1016/j.ijrmhm.2012.02.021
  40. X.-Q. Chen, H. Niu, D. Li, and Y. Li, "Modeling Hardness of Polycrystalline Materials and Bulk Metallic Glasses", Intermetallics, 2011, 19, 1275-1281. https://doi.org/10.1016/j.intermet.2011.03.026
  41. M. E. Fine, L. D. Brown, and H. L. Marcus, "Elastic Constants Versus Melting Temperature in Metals", Scripta Metallurgica, 1984, 18, 951-956. https://doi.org/10.1016/0036-9748(84)90267-9
  42. M. Radovic, M. W. Barsoum, A. Ganguly, T. Zhen, P. Finkel, S. R. Kalidindi, and E. L. Curzio, "On the Elastic Properties and Mechanical Damping of Ti3SiC2, Ti3GeC2, Ti3Si0.5Al0.5C2 and Ti2AlC in the 300-1573K Temperature Range", Acta Materialia, 2006, 54, 2757-2767. https://doi.org/10.1016/j.actamat.2006.02.019
  43. Z. J. Lin, M. J. Zhuo, M. S. Li, J. Y. Wang, and Y. C. Zhou, "Synthesis and Microstructure of Layered-ternary Ti2AlN Ceramic", Scripta Materialia, 2007, 56, 1115-1118. https://doi.org/10.1016/j.scriptamat.2007.01.049
  44. T. Liao, J. Wang, and Y. Zhou, "First-principles Investigation of Intrinsic Defects and (N, O) Impurity Atom Stimulated Al Vacancy in Ti2AlC", Appl. Phys. Lett., 2008, 93, 26-29.
  45. D. Music, R. Ahuja, and J. M. Schneider, "Theoretical Study of Nitrogen Vacancies in Ti4AlN3", Appl. Phys. Lett., 2005, 86, 3-6.
  46. S. Nigar, Z. Zhou, H. Wang, and M. Imtiaz, "Modulating the Electronic and Magnetic Properties of Graphene", Rsc Adv., 2017, 7, 51546-51580. https://doi.org/10.1039/C7RA08917A
  47. M. Yamaguchi, M. Shiga, and H. Kaburaki, "Grain Boundary Decohesion by Sulfur Segregation in Ferromagnetic Iron and Nicke -A First-Principles Study-", Materials Transactions, 2006, 47, 2682-2689. https://doi.org/10.2320/matertrans.47.2682
  48. W. J. Peng, H. Peng, G. X. Wu, and J. Y. Zhang, "Effect of Zinc-doping on Tensile Strength of Sigma 5 bcc Fe Symmetric Tilt Grain Boundary", Comput. Mater. Sci., 2020, 171, 10-17.