DOI QR코드

DOI QR Code

Excitation and Emission Properties of Adsorbed U(VI) on Amorphous Silica Surface

  • Received : 2020.10.19
  • Accepted : 2020.11.08
  • Published : 2020.12.30

Abstract

In the geochemical field, the chemical speciation of hexavalent uranium (U(VI)) has been widely investigated by performing measurements to determine its luminescence properties, namely the excitation, emission, and lifetime. Of these properties, the excitation has been relatively overlooked in most time-resolved laser fluorescence spectroscopy (TRLFS) studies. In this study, TRLFS and continuous-wave excitation-emission matrix spectroscopy are adopted to characterize the excitation properties of U(VI) surface species that interact with amorphous silica. The luminescence spectra of U(VI) measured from a silica suspension and silica sediment showed very similar spectral shapes with similar lifetime values. In contrast, the excitation spectra of U(VI) measured from these samples were significantly different. The results show that distinctive excitation maxima appeared at approximately 220 and 280 nm for the silica suspension and silica sediment, respectively.

Keywords

References

  1. K.W. Kim, M.J. Kim, M.K. Oh, J. Kim, H.H. Sung, R. I. Foster, and K.Y Lee, "Development of a treatment process and immobilization method for the volume reduction of uranium-bearing spent catalysts for final disposal", J. Nucl. Sci. Technol., 55(12), 1459-1472 (2018). https://doi.org/10.1080/00223131.2018.1516578
  2. J.I. Kim, "Significance of Actinide Chemistry for the Long-Term Safety of Waste Disposal", Nucl. Eng. Technol., 38(6), 459-482 (2006).
  3. H. Geckeis, J. Lutzenkirchen, R. Polly, T. Rabung, and M. Schmidt, "Mineral-Water Interface Reactions of Actinides", Chem. Rev., 113(2), 1016-1062 (2013). https://doi.org/10.1021/cr300370h
  4. T. Reich, H. Moll, M.A. Denecke, G. Geipel, G. Bernhard, H. Nitsche, P.G. Allen, J.J. Bucher, N. Kaltsoyannis, N.M. Edelstein, and D.K. Shuh, "Characterization of Hydrous Uranyl Silicate by EXAFS", Radiochim. Acta., 74, 219-223 (1996). https://doi.org/10.1524/ract.1996.74.special-issue.219
  5. T. Reich, H. Moll, T. Arnold, M.A. Denecke, C. Hennig, G. Geipel, G. Bernhard, H. Nitsche, P.G. Allen, J.J. Bucher, N.M. Edelstein, and D.K. Shuh, "An EXAFS Study of Uranium(VI) Sorption Onto Silica Gel and Ferrihydrite", J. Electron Spectrosc. Relat. Phenom., 96(1-3), 237-243 (1998). https://doi.org/10.1016/S0368-2048(98)00242-4
  6. E.R. Sylwester, E.A. Hudson, and P.G. Allen, "The Structure of Uranium (VI) Sorption Complexes on Silica, Alumina, and Montmorillonite", Geochim. Cosmochim. Acta., 64(14), 2431-2438 (2000). https://doi.org/10.1016/S0016-7037(00)00376-8
  7. M. Walter, T. Arnold, G. Geipel, A. Scheinost, and G. Bernhard, "An EXAFS and TRLFS Investigation on Uranium(VI) Sorption to Pristine and Leached Albite Surfaces", J. Colloid Interface Sci., 282(2), 293-305 (2005). https://doi.org/10.1016/j.jcis.2004.08.133
  8. M.S. Massey, J.S. Lezama Pacheco, J.M. Nelson, S. Fendorf, and K. Maher, "Uranium Incorporation into Amorphous Silica", Environ. Sci. Technol., 48(15), 8636-8644 (2014). https://doi.org/10.1021/es501064m
  9. A. Kowal Fouchard, R. Drot, E. Simoni, and J.J. Ehrhardt, "Use of Spectroscopic Techniques for Uranium(VI)/Montmorillonite Interaction Modelling", Environ. Sci. Technol., 38(5), 1399-1407 (2004). https://doi.org/10.1021/es0348344
  10. R. Drot, J. Roques, and E. Simoni, "Molecular Approach of the Uranyl/Mineral Interfacial Phenomena", C. R. Chimie., 10(10-11), 1078-1091 (2007). https://doi.org/10.1016/j.crci.2007.01.014
  11. J. Wheeler and J.K. Thomas, "Photochemistry of the Uranyl Ion in Colloidal Silica Solution", J. Phys. Chem., 88(4), 750-754 (1984). https://doi.org/10.1021/j150648a026
  12. H. Moll, G. Geipel, V. Brendler, G. Berhard, and H. Nitsche, "Interaction of Uranium(VI) with Silicic Acid in Aqueous Solutions Studied by Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS)", J. Alloys Compd., 271-273, 765-768 (1998). https://doi.org/10.1016/S0925-8388(98)00203-5
  13. U. Gabriel, L. Charlet, C.W. Schlapfer, J.C. Vial, A. Brachmann, and G. Geipel, "Uranyl Surface Speciation on Silica Particles Studied by Time-Resolved Laser-Induced Fluorescence Spectroscopy", J. Colloid Interface Sci., 239(2), 358-368 (2001). https://doi.org/10.1006/jcis.2001.7602
  14. C.J. Chisholm-Brause, J.M. Berg, K.M. Little, R.A. Matzner, and D.E. Morris, "Uranyl Sorption by Smectites: Spectroscopic Assessment of Thermodynamic Modelling", J. Colloid Interface Sci., 277, 366-382 (2004). https://doi.org/10.1016/j.jcis.2004.04.047
  15. P. Trepte and V. Brendler, Supporting Information in A. Krepelova, V. Brendler, S. Sachs, N. Baumann, and G. Bernhard, "U(VI)-Kaolinite Surface Complexation in Absence and Presence of Humic Acid Studied by TRLFS", Environ. Sci. Technol., 41(17), 6142-6147 (2007). https://doi.org/10.1021/es070419q
  16. G. Othmane, T. Allard, T. Vercouter, G. Morin, M. Fayek, and G. Calas, "Luminescence of Uranium-Bearing Opals: Origin and Use as a pH Record", Chem. Geol., 423, 1-6 (2016). https://doi.org/10.1016/j.chemgeo.2015.12.010
  17. C.J. Chisholm-Brause, J.M. Berg, R.A. Matzner, and D.E. Morris, "Uranium(VI) Sorption Complexes on Montmorillonite as a Function of Solution Chemistry", J. Colloid Interface Sci., 233(1), 38-49 (2001). https://doi.org/10.1006/jcis.2000.7227
  18. N. Baumann, V. Brendler, T. Arnold, G. Geipel, and G. Bernhard, "Uranyl Sorption Onto Gibbsite Studied by Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS)", J. Colloid Interface Sci., 290(2), 318-324 (2005). https://doi.org/10.1016/j.jcis.2004.10.076
  19. T. Arnold, S. Utsunomiya, G. Geipel, R.C. Ewing, N. Baumann, and V. Brendler, "Adsorbed U(VI) Surface Species on Muscovite Identified by Laser Fluorescence Spectroscopy and Transmission Electron Microscopy", Environ. Sci. Technol., 40(15), 4646-4652 (2006). https://doi.org/10.1021/es052507l
  20. Z. Wang, J.M. Zachara, P.L. Gassman, C. Liu, O. Qafoku, W. Yantasee, and J.G. Catalano, "Fluorescence Spectroscopy of U(VI)-Silicates and U(VI)-Contaminated Hanford Sediment", Geochim. Cosmochim. Acta., 69(6), 1391-1403 (2005). https://doi.org/10.1016/j.gca.2004.08.028
  21. A.S. Saleh, J.Y. Lee, Y. Jo, and J.I. Yun, "Uranium(VI) Sorption Complexes on Silica in the Presence of Calcium and Carbonate", J. Environ. Radioact., 182, 63-69 (2018). https://doi.org/10.1016/j.jenvrad.2017.11.006
  22. M.J. Comarmond, R. Steudtner, M. Stockmann, K. Heim, K. Muller, V. Brendrer, T.E. Payne, and H. Foerstendorf, "The Sorption Process of U(VI) onto SiO2 https://doi.org/10.1021/acs.est.6b02075
  23. B. Drobot, R. Steudtner, J. Raff, G. Geipel, V. Brendler, and S. Tsushima, "Combination Luminescence Spectroscopy, Parallel Factor Analysis and Quantum Chemistry to Reveal Metal Speciation - A Case Study of Uranyl(VI) Hydrolysis", Chem. Sci., 6(2), 964-972 (2015). https://doi.org/10.1039/C4SC02022G
  24. C. Moulin, I. Laszak, V. Moulin, and C. Tondre, "Time-Resolved Laser-Induced Fluorescence as a Unique Tool for Low-Level Uranium Speciation", Appl. Spectrosc., 52(4), 528-535 (1998). https://doi.org/10.1366/0003702981944076
  25. G. Wang, Y. Su, and D.L. Monts, "Parametric Investigation of Laser-Induced Fluorescence of Solid-State Uranyl Compounds", J. Phys. Chem. A., 112(42), 10502-10508 (2008). https://doi.org/10.1021/jp802327f
  26. E.S. Ilton, Z. Wang, J.F. Boily, O. Qafoku, K.M. Rosso, and S.C. Smith, "The Effect of pH and Time on the Extractability and Speciation of Uranium(VI) Sorbed to SiO2", Environ. Sci. Technol., 46(12), 6604-6611 (2012). https://doi.org/10.1021/es300501v
  27. G. Meinrath, "Uranium(VI) Speciation by Spectroscopy", J. Radioanal. Nucl. Chem., 224(1-2), 119-126 (1997). https://doi.org/10.1007/BF02034623
  28. J.T. Bell and R.E. Biggers, "The Absorption Spectrum of the Uranyl Ion in Perchlorate Media Part II. *The Effects of Hydrolysis on the Resolved Spectral Bands", J. Mol. Spectrosc., 22(1-4), 262-271 (1967). https://doi.org/10.1016/0022-2852(67)90172-5
  29. J.T. Bell and R.E. Biggers, "Absorption Spectrum of the Uranyl Ion in Perchlorate Media Part III. Resolution of the Ultraviolet Band Structure; Some Conclusions Concerning the Excited State of UO22+", J. Mol. Spectrosc., 25(3), 312-329 (1968). https://doi.org/10.1016/S0022-2852(68)80045-1
  30. R.G. Denning, "Electronic Structure and Bonding in Actinyl Ions and their Analogs", J. Phys. Chem. A., 111(20), 4125-4143 (2007). https://doi.org/10.1021/jp071061n
  31. M.P. Redmond, S.M. Cornet, S.D. Woodall, D. Whittaker, D. Collison, M. Helliwell, and L.S. Natrajan, "Probing the Local Coordination Environment and Nuclearity of Uranyl(VI) Complexes in Non-aqueous Media by Emission Spectroscopy", Dalton Trans., 40(15), 3914-3926 (2011). https://doi.org/10.1039/c0dt01464h
  32. P. Harvey, A. Nonat, C. Platas-Iglesias, L.S. Natrajan, and L.J. Charbonniere, "Sensing Uranyl(VI) Ions by Coordination and Energy Transfer to a Luminescent Europium(III) Complex", Angew. Chem. Int. Ed., 130(131), 10069-10072 (2018). https://doi.org/10.1002/ange.201805316
  33. S. Maji, S. Kumar, and S. Kalyanasundaram, "Luminescence Studies of Uranyl-Aliphatic Dicarboxylic Acid Complexes in Acetonitrile Medium", Radichim Acta., 108(5), 361-373 (2020). https://doi.org/10.1515/ract-2019-3131