References
- Veron, F., 2015, "Ocean spray," Annu. Rev. Fluid Mech., Vol. 47, 507. https://doi.org/10.1146/annurev-fluid-010814-014651
- Baylor, E. R., Peters, V., Baylor, M. B., 1977, "Water-to-air transfer of virus," Science., Vol. 197, pp.763-764. https://doi.org/10.1126/science.329413
- Duchemin, L., Popinet, S., Josserand, C., Zaleski, S., 2002, "Jet formation in bubbles bursting at a free surface," Phys. Fluids., Vol. 14, pp.3000-3008. https://doi.org/10.1063/1.1494072
- Boulton-Stone, J. M. and Blake, J. R., 1993, "Gas bubbles bursting at a free surface," J. Fluid Mech., Vol. 254, 437. https://doi.org/10.1017/S0022112093002216
- Ghabache, E., Antkowiak, A., Josserand, C., Seon, T., 2014, "On the physics of fizziness: how bubble bursting controls droplets ejection," Phys. Fluids., Vol. 26, 121701. https://doi.org/10.1063/1.4902820
- Deike, L., Ghabache, E., Liger-Belair, G., Das, A. K., Zaleski, S., Popinet, S., Seon, T., 2018, "Dynamics of jets produced by bursting bubbles," Phys. Rev. Fluids., Vol. 3, 013603. https://doi.org/10.1103/PhysRevFluids.3.013603
- Toba, Y., 1959, "Drop production by bursting of air bubbles on the sea surface (ii) theoretical study on the shape of floating bubbles," J. Oceanogr. Soc. Jpn., Vol. 15, 121. https://doi.org/10.5928/kaiyou1942.15.121
- Singh, D. and Das, A. K., 2019, "Numerical investigation of the collapse of a static bubble at the free surface in the presence of neighbors," Phys. Rev. Fluids., Vol. 4, 023602. https://doi.org/10.1103/PhysRevFluids.4.023602
- Chorin, A. J., 1997, "A numerical method for solving incompressible viscous flow problems," J. Comput. Phys., Vol. 135, pp.118-125. https://doi.org/10.1006/jcph.1997.5716
- Kunz, R. F., Boger, D. A., Stinebring, D. R., Chyczewski, T. S., Lindau, J. W., Gibeling, H. J., Venkateswaran, S., and Govindan, T. R., 2000, "A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction," Comput. Fluids., Vol. 29, 849. https://doi.org/10.1016/S0045-7930(99)00039-0
- Ha, C. T. and Lee, J. H., 2020, "A modified monotoni-city preserving high-order scheme with application to computation of multi-phase flows," Comput. Fluids., Vol. 197, 104345. https://doi.org/10.1016/j.compfluid.2019.104345
- Macintyre, F., 1972, "Flow patterns in breaking bubbles," J. Geophys. Res., Vol. 77 (27), pp.5211-5228. https://doi.org/10.1029/JC077i027p05211
- Ganan-Calvo, A. M., 2017, "Revision of Bubble Bursting: Universal Scaling Laws of Top Jet Drop Size and Speed," Phys. Rev. Lett., Vol. 119, 204502. https://doi.org/10.1103/PhysRevLett.119.204502
- Gordillo, J. M. and Rodriquez-Rodriquez, J., 2019, "Capillary waves control the ejection of bubble bursting jets," J. Fluid Mech., Vol. 867, pp.556-571. https://doi.org/10.1017/jfm.2019.161
- Bhaga, D. and Weber, M. E., 1981, "Bubbles in viscous liquids: shapes, wakes and velocities," J. Fluid Mech., Vol.105, pp.61-85. https://doi.org/10.1017/S002211208100311X
- Walls, P., Henaux, L., Bird, J., 2015, "Jet drops from bursting bubbles: How gravity and viscosity couple to inhibit droplet production," Phys. Rev. E., Vol.92, 021002(R).
- Ghabache, E. and Seon, T., 2016, "Size of the top jet drop produced by bubble bursting," Phys. Rev. Fluids., Vol.1, 051901(R).
- Zeff, B. W., Kleber, B., Fineberg, J., Lathrop, D. P., 2000, "Singularity dynamics in curvature collapse and jet eruption on a fluid surface," Lett. Nature., Vol.403, 401. https://doi.org/10.1038/35000151