DOI QR코드

DOI QR Code

Enhancing the Absorption Properties of Biomass-based Superabsorbent Terpolymer

  • Kim, Jung Soo (Human Convergence Technology R&D Department, Korea Institute of Industrial Technology (KITECH)) ;
  • Kim, Dong Hyun (Human Convergence Technology R&D Department, Korea Institute of Industrial Technology (KITECH))
  • 투고 : 2020.08.18
  • 심사 : 2020.09.03
  • 발행 : 2020.12.31

초록

Superabsorbent polymers (SAPs) can absorb and retain ten to thousand times their dry mass of water because of their three-dimensional hydrophilic structures. Conventional SAPs are mainly composed of poly(acrylic acid sodium salt) derived from petrochemicals. The present work is aimed at limiting the use of the petrochemical component by replacing it with a biomass-based material. First, the core-SAP was prepared via the terpolymerization of itaconic acid, vinylsulfonic acid, and cellulose, and the optimum conditions in terms of material input ratio were determined. Following this, the core-SAP was surface-crosslinked by esterification with butane diol to improve its liquid permeability and absorbency under load (AUL). The liquid permeability was measured according to the amount of 0.9 wt.% NaCl solution passing between the swollen SAP particles under a given pressure, and the AUL was estimated from the weight of this solution absorbed under 0.3 psi pressure.

키워드

참고문헌

  1. J. Mohammad and Zohuriaan-Mehr., "Superabsorbent Polymer Materials: A Review", Iranian Polymer Journal., 17, 451 (2008).
  2. P. Colombo, "Swelling-controlled release in hydrogel matrices for oral route", Adv. Drug. Del. Rev., 11, 37 (1993). https://doi.org/10.1016/0169-409X(93)90026-Z
  3. Y. Huang, M. Zeng, J. Ren, J. Wang, L. Fan, and Q. Xu, "Preparation and swelling properties of graphene oxide/ poly(acrylicacid-co-acrylamide) super-absorbent hydrogel nanocomposites", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 401, 97 (2012). https://doi.org/10.1016/j.colsurfa.2012.03.031
  4. K. Kabiri and M. J. Zohuriaan-Mehr, "Superabsorbent hydrogel composites", Polymers for Advanced Technologies, 14, 438 (2003). https://doi.org/10.1002/pat.356
  5. J. Maitra and V. K. Shukla, "Cross-linking in Hydrogels - A Review", Am. J. Polym. Sci., 4, 25 (2014).
  6. E. Karadag, D. Saraydin, and O. Guven, "Radiation Induced Superabsorbent Hydrogels. Acrylamide/Itaconic Acid Copolymers", Macromolecular Materials and Engineering, 286, 34 (2001). https://doi.org/10.1002/1439-2054(20010101)286:1<34::AID-MAME34>3.0.CO;2-J
  7. A. Dabbaghi, A. Jahandideh, K. Kabiri, A. Ramazani, and M. J. Zohuriaan-Mehr, "The synthesis and incorporation of a star-shaped bio-based modifier in the acrylic acid based superabsorbent: a strategy to enhance the absorbency under load", Polymer-Plastics Technology and Materials, 1 (2019).
  8. A. El-Halah, D. Machado, N. Gonzalez, J. Contreras, and F. Lopez-Carrasquero, "Use of super absorbent hydrogels derivative from acrylamide with itaconic acid and itaconates to remove metal ions from aqueous solutions", Journal of Applied Polymer Science, 136, 46999 (2019). https://doi.org/10.1002/app.46999
  9. K. Kabiri, H. Omidian, S. A. Hashemi, and M. J. Zohuriaan-Mehr, "Synthesis of fast-swelling superabsorbent hydrogels: effect of crosslinker type and concentration on porosity and absorption rate", European Polymer Journal, 39, 1341 (2003). https://doi.org/10.1016/S0014-3057(02)00391-9
  10. J. D. Stahl, M. D. Cameron, J. Haselbach, and S. D. Aust, "Biodegradation of Superabsorbent Polymers in Soil", Environmental Science and Pollution Research, 7, 83 (2000). https://doi.org/10.1065/espr199912.014
  11. M. Yadav, A. Srivastav, S. K. Verma, and K. Behari, "Graft (partially carboxymethylated guar gum-g-poly vinyl sulfonic acid) copolymer: From synthesis to applications", Carbohydrate Polymers, 97, 597 (2013). https://doi.org/10.1016/j.carbpol.2013.02.084
  12. Mingyang, Chen, et al. "Reinforced swelling and water-retention properties of super-absorbent hydrogel fabricated by a dual stretchable single network tactic", Colloids and Surfaces A: Physicochemical and Engineering Aspects (2020).
  13. C. Cui and S. Zhang, "Synthesis, scale inhibition and dispersion performance evaluation of the environmentally benign additive IA-AMPS-APEG copolymer", Environmental Science: Water Research & Technology, 5, 1736 (2019). https://doi.org/10.1039/C9EW00506D
  14. Y. Tang, C. Guan, Y. Liu, Z. Zhang, B. Li, and L. Zhu, "Preparation and absorption studies of poly(acrylic acid-co-2-acrylamide-2-methyl-1-propane sulfonic acid)/graphene oxide superabsorbent composite", Polymer Bulletin, 76, 1383 (2019). https://doi.org/10.1007/s00289-018-2446-3
  15. J. Yang, F. Li, M. Li, S. Zhang, J. Liu, C. Liang, and L. Xiong, "Fabrication and characterization of hollow starch nanoparticles by gelation process for drug delivery application", Carbohydrate Polymers, 173, 223 (2017). https://doi.org/10.1016/j.carbpol.2017.06.006
  16. C. K. Mylangam, S. Beeravelli, J. Medikonda, J. S. Pidaparthi, and V. R. M. Kolapalli, "Badam gum: a natural polymer in mucoadhesive drug delivery. Design, optimization, and biopharmaceutical evaluation of badam gum-based metoprolol succinate buccoadhesive tablets", Drug Delivery, 23, 195 (2016). https://doi.org/10.3109/10717544.2014.908979
  17. S. A. Riyajan, "Robust and biodegradable polymer of cassava starch and modified natural rubber", Carbohydrate Polymers, 134, 267 (2015). https://doi.org/10.1016/j.carbpol.2015.07.038
  18. F. Zhang, L. Fang, C. Wang, L. Shi, T. Chang, H. Yang, and M. Cui, "Effects of starches on the textural, rheological, and color properties of surimi-beef gels with microbial tranglutaminase", Meat Science, 93, 533 (2013). https://doi.org/10.1016/j.meatsci.2012.11.013
  19. C. C. and Y. J. Lee, "Preparation of the acidic PVA/MMT nanocomposite polymer membrane for the direct methanol fuel cell (DMFC)", Thin Solid Films, 517, 4735 (2009). https://doi.org/10.1016/j.tsf.2009.03.138
  20. R. Bhattacharyya and S. K. Ray, "Enhanced adsorption of synthetic dyes from aqueous solution by a semi-interpenetrating network hydrogel based on starch", Journal of Industrial and Engineering Chemistry, 20, 3714 (2014). https://doi.org/10.1016/j.jiec.2013.12.071
  21. E. A. Bursali, S. Coskun, M. Kizil, and M. Yurdakoc, "Synthesis, characterization and in vitro antimicrobial activities of boron/starch/polyvinyl alcohol hydrogels", Carbohydrate Polymers, 83, 1377 (2011). https://doi.org/10.1016/j.carbpol.2010.09.056
  22. Y. Zheng, P. Li, J. Zhang, and A. Wang, "Study on superabsorbent composite XVI. Synthesis, characterization and swelling behaviors of poly (sodium acrylate)/vermiculite superabsorbent composites", European Polymer Journal, 43, 1691 (2007). https://doi.org/10.1016/j.eurpolymj.2007.02.023
  23. S. Y. Lee, D. J. Mohan, I. A. Kang, G. H. Doh, S. Lee, and S. O. Han, "Nanocellulose reinforced PVA composite films: effects of acid treatment and filler loading", Fibers and Polymers, 10, 77 (2009). https://doi.org/10.1007/s12221-009-0077-x
  24. K. M. Lee, J. H. Min, S. Oh, H. Lee, and W. G. Koh, "Preparation and characterization of superabsorbent polymers (SAPs) surface-crosslinked with polycations", Reactive and Functional Polymers, 104774 (2020). https://doi.org/10.1016/j.reactfunctpolym.2020.104774
  25. D. Qiao, H. Liu, L. Yu, X. Bao, G. P. Simon, E. Petinakis, and L. Chen, "Preparation and characterization of slow-release fertilizer encapsulated by starch-based superabsorbent polymer", Carbohydrate Polymers, 147, 146 (2016). https://doi.org/10.1016/j.carbpol.2016.04.010
  26. J. Lee, S. Park, H. G. Roh, S. Oh, S. Kim, M. Kim, and J. Park, "Preparation and characterization of superabsorbent polymers based on starch aldehydes and carboxymethyl cellulose", Polymers, 10, 605 (2018). https://doi.org/10.3390/polym10060605
  27. W. Wang and A. Wang, "Nanocomposite of carboxymethyl cellulose and attapulgite as a novel pH-sensitive superabsorbent: Synthesis, characterization and properties", Carbohydrate Polymers, 82, 83 (2010). https://doi.org/10.1016/j.carbpol.2010.04.026
  28. N. Moini, K. Kabiri, and M. J. Zohuriaan-Mehr, "Practical improvement of SAP hydrogel properties via facile tunable cross-linking of the particles surface", Polymer-Plastics Technology and Engineering, 55, 278 (2016). https://doi.org/10.1080/03602559.2015.1070873