DOI QR코드

DOI QR Code

Synthesis of Zinc Oxide Nanoparticle-(C60) Fullerene Nanowhisker Composite for Catalytic Degradation of Methyl Orange under Ultraviolet and Ultrasonic Irradiation

  • Ko, Jeong Won (Department of Science Education, Graduate School, Dankook University) ;
  • Son, Yeon-A (Department of Science Education, Graduate School, Dankook University) ;
  • Ko, Weon Bae (Department of Chemistry, Shamyook University)
  • Received : 2020.11.03
  • Accepted : 2020.11.25
  • Published : 2020.12.31

Abstract

Zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and sodium hydroxide (NaOH) were dissolved in distilled water and stirred for 30 min. The resulting solution was sonicated by an ultrasonic wave for 45 min. This solution was washed with distilled water and ethanol after centrifugation; next, it was placed in an electric furnace at 200℃ for 1 h under the flow of Ar gas to obtain zinc oxide nanoparticle. A zinc oxide nanoparticle-(C60) fullerene nanowhisker composite was synthesized using the zinc oxide nanoparticle solution, C60-saturated toluene, and isopropyl alcohol via the liquid-liquid interfacial precipitation method. The zinc oxide nanoparticle and zinc oxide nanoparticle-(C60) fullerene nanowhisker composite were characterized using X-ray diffraction, scanning electron microscopy, and Raman spectroscopy, and they were used for the catalytic degradation of methyl orange (MO) under ultraviolet (at 254 and 365 nm) and ultrasonic irradiation. In addition, the catalytic degradation of MO over the zinc oxide nanoparticle and zinc oxide nanoparticle-(C60) fullerene nanowhisker composite was evaluated using ultraviolet-visible spectroscopy.

Keywords

References

  1. C. Lavanya, D. Rajesh, C. Sunil, and S. Sarita, "Degradation of toxic dyes: A review", Int. J. Curr. Microbiol. Appl. Sci., 3, 189 (2014).
  2. V. N. Nguyen, D. T. Tran, M. T. Nguyen, T. T. T. Le, M. N. Ha, M. V. Nguyen, and T. D. Pham, "Enhanced photocatalytic degradation of methyl orange using ZnO/graphene oxide nanocomposites", Res. Chem. Intermed., 44, 3081 (2018). https://doi.org/10.1007/s11164-018-3294-3
  3. T. Katsuda, H. Ooshima, M. Azuma, and J. Kato, "New detection method for hydrogen gas for screening hydrogenproducing microorganisms using water-soluble Wilkinson's catalyst derivative", J. Biosci. Bioeng., 102, 220 (2006). https://doi.org/10.1263/jbb.102.220
  4. B. Choudhary, A. Goyal, and S. L. Khokra, "New visible spectrophotometric method for estimation of itopride hydrochloride from tablets formulations using methyl orange reagent", Int. J. Pharm. Pharm. Sci., 1, 159 (2009).
  5. Y. M. Slokar and A. M. Le Marechal, "Methods of decoloration of textile wastewaters", Dyes Pigm., 37, 335 (1998). https://doi.org/10.1016/S0143-7208(97)00075-2
  6. D. Chatterjee and S. Dasgupta,"Visible light induced photocatalytic degradation of organic pollutants", J. Photochem. Photobiol. C, 6, 186 (2005). https://doi.org/10.1016/j.jphotochemrev.2005.09.001
  7. M. Seo, Y. Jung, D. Lim, D. Cho, and Y. Jeong, "Piezoelectric and field emitted properties of controlled ZnO nanorods on CNT yarns", Mater. Lett., 92, 177 (2013). https://doi.org/10.1016/j.matlet.2012.10.076
  8. R. Li, S. Yabe, M. Yamashita, S. Momose, S. Yoshida, S. Yin, and T. Sato, "Synthesis and UV-shielding properties of ZnO- and CaO-doped CeO2 via soft solution chemical process", Solid State Ion., 151, 235 (2002). https://doi.org/10.1016/S0167-2738(02)00715-4
  9. C. Y. Zhang, "The influence of post-growth annealing on optical and electrical properties of p-type ZnO films", Mater. Sci. Semicond. Process., 10, 215 (2007). https://doi.org/10.1016/j.mssp.2008.01.001
  10. Q. Xiao, and L. Ouyang, "Photocatalytic photodegradation of xanthate over Zn1-xMnxO under visible light irradiation", J. Alloys Compd., 479, L4 (2009). https://doi.org/10.1016/j.jallcom.2008.12.085
  11. M. Purica, E. Budianu, and E. Rusu, "ZnO thin films on semiconductor substrate for large area photodetector applications", Thin Solid Films, 383, 284 (2001). https://doi.org/10.1016/S0040-6090(00)01579-0
  12. C. S. Lin, C. C. Hwang, W. H. Lee, and W. Y. Tong, "Preparation of zinc oxide (ZnO) powders with different types of morphology by a combustion synthesis method", Mater. Sci. Eng. B. Solid State Mater. Adv. Technol., 140, 31 (2007). https://doi.org/10.1016/j.mseb.2007.03.023
  13. N. Talebian, S. M. Amininezhad, and M. Doudi, "Controllable synthesis of ZnO nanoparticles and their morphologydependent antibacterial and optical properties", J. Photochem. Photobiol. B, 120, 66 (2013). https://doi.org/10.1016/j.jphotobiol.2013.01.004
  14. L. Zhong, L. and K. Yun, "Graphene oxide-modified ZnO particles: synthesis, characterization, and antibacterial properties", Int. J. Nanomedicine, 10, 79 (2015). https://doi.org/10.2147/IJN.S88319
  15. A.Yu, J. Qian, H. Pan, Y. Cui, M. Xu, L. Tu, and X. Zhou, "Micro-lotus constructed by Fe-doped ZnO hierarchically porous nanosheets: preparation, characterization and gas sensing property", Sens. Actuators B Chem., 158, 9 (2011). https://doi.org/10.1016/j.snb.2011.03.052
  16. T. J. Kuo, C. N. Lin, C. L. Kuo, and M. H. Huang, "Growth of ultralong ZnO nanowires on silicon substrates by vapor transport and their use as recyclable photocatalysts", Chem. Mater., 19, 5143 (2007). https://doi.org/10.1021/cm071568a
  17. P. Sathishkumar, R. Sweena, J. J. Wu, and S. Anandan, S. "Synthesis of CuO-ZnO nanophotocatalyst for visible light assisted degradation of a textile dye in aqueous solution", Chem. Eng. J., 171, 136 (2011). https://doi.org/10.1016/j.cej.2011.03.074
  18. M. Azarang, A. Shuhaimi, R. Yousefi, A. M. Golsheikh, and M. Sookhakian, " Synthesis and characterization of ZnO NPs/reduced graphene oxide nanocomposite prepared in gelatin medium as highly efficient photo-degradation of MB", Ceram. Int., 40, 10217 (2014). https://doi.org/10.1016/j.ceramint.2014.02.109
  19. T. Xu, L. Zhang, H. Cheng, and Y. Zhu,"Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study", Appl. Catal. B, 101, 382 (2011). https://doi.org/10.1016/j.apcatb.2010.10.007
  20. Z. Tian, S. Bai, K. Cao, and J. Li, "Facile preparation of ZnO nanorods/reduced graphene oxide nanocomposites with photocatalytic property", Mater. Express, 6, 437 (2016). https://doi.org/10.1166/mex.2016.1332
  21. D. Li, W. Wu, Y. Zhang, L. Liu, and C. Pan, "Preparation of ZnO/graphene heterojunction via high temperature and its photocatalytic property", J. Mater. Sci., 49, 1854 (2014). https://doi.org/10.1007/s10853-013-7873-9
  22. J. O. Hwang, D. H. Lee, J. Y. Kim, T. H. Han, B. H. Kim, M. Park, and S. O. Kim, "Vertical ZnO nanowires/graphene hybrids for transparent and flexible field emission", J. Mater. Chem., 21, 3432 (2011). https://doi.org/10.1039/c0jm01495h
  23. N. Jain, A. Bhargava, and J. Panwar, "Enhanced photocatalytic degradation of methylene blue using biologically synthesized "protein-capped" ZnO nanoparticles", Chem. Eng. J., 243, 549 (2014). https://doi.org/10.1016/j.cej.2013.11.085
  24. J. Lin, M. Penchev, G. Wang, R. K. Paul, J. Zhong, X. Jing, and C. S. Ozkan, "Heterogeneous graphene nanostructures: ZnO nanostructures grown on large-area graphene layers", Small, 6, 2448 (2010). https://doi.org/10.1002/smll.201000250
  25. R. Atchudan, T. N. J. I. Edison, S. Perumal, D. Karthikeyan, and Y. R. Lee, "Facile synthesis of zinc oxide nanoparticles decorated graphene oxide composite via simple solvothermal route and their photocatalytic activity on methylene blue degradation", J. Photochem. Photobiol. B, 162, 500 (2016). https://doi.org/10.1016/j.jphotobiol.2016.07.019
  26. R. K. Biroju, P. K. Giri, S. Dhara, K. Imakita, and M. Fujii, "Graphene-assisted controlled growth of highly aligned ZnO nanorods and nanoribbons: growth mechanism and photoluminescence properties", ACS Appl. Mater. Interfaces, 6, 377 (2014). https://doi.org/10.1021/am404411c
  27. S. Gao, X. Jia, S. Yang, Z. Li, and K. Jiang, "Hierarchical Ag/ZnO micro/nanostructure: green synthesis and enhanced photocatalytic performance", J. Solid State Chem., 184, 764 (2011). https://doi.org/10.1016/j.jssc.2011.01.025
  28. T. Jia, W. Wang, F. Long, Z. Fu, H. Wang, and Q. Zhang, "Fabrication, characterization and photocatalytic activity of La-doped ZnO nanowires", J. Alloys Compd., 484, 410 (2009). https://doi.org/10.1016/j.jallcom.2009.04.153
  29. J. Z. Kong, A. D. Li, H. F. Zhai, Y. P. Gong, H. Li, and D. Wu, "Preparation, characterization of the Ta-doped ZnO nanoparticles and their photocatalytic activity under visible-light illumination", J. Solid State Chem., 182, 2061 (2009). https://doi.org/10.1016/j.jssc.2009.03.022
  30. S. Pyne, G. P. Sahoo, D. K. Bhui, H. Bar, P. Sarkar, S. Samanta, and A. Misra, "Enhanced photocatalytic activity of metal coated ZnO nanowires", Spectrochim. Acta A Mol. Biomol. Spectrosc., 93, 100 (2012). https://doi.org/10.1016/j.saa.2012.02.050
  31. J. H. Sun, S. Y. Dong, J. L. Feng, X. J. Yin, and X. C. Zhao, "Enhanced sunlight photocatalytic performance of Sn-doped ZnO for Methylene Blue degradation", J. Mol. Catal. A Chem., 335, 145 (2011). https://doi.org/10.1016/j.molcata.2010.11.026
  32. B. Thongrom, P. Amornpitoksuk, S. Suwanboon, and J. Baltrusaitis, "Photocatalytic degradation of dye by Ag/ZnO prepared by reduction of Tollen's reagent and the ecotoxicity of degraded products", Korean J. Chem. Eng., 31, 587 (2014). https://doi.org/10.1007/s11814-013-0262-x
  33. Z. Barzgari, A. Ghazizadeh, A., and S. Z. Askari, "Preparation of Mn-doped ZnO nanostructured for photocatalytic degradation of Orange G under solar light", Res. Chem. Intermed., 42, 4303 (2016). https://doi.org/10.1007/s11164-015-2276-y
  34. C. Yu, K. Yang, Y. Xie, Q. Fan, C. Y. Jimmy, Q. Shu, and C. Wang, "Novel hollow Pt-ZnO nanocomposite microspheres with hierarchical structure and enhanced photocatalytic activity and stability", Nanoscale, 5, 2142 (2013). https://doi.org/10.1039/c2nr33595f
  35. S. Ahmad, M. Kharkwal, and R. Nagarajan,"Application of KZnF3 as a single source precursor for the synthesis of nanocrystals of ZnO2: F and ZnO: F; synthesis, characterization, optical, and photocatalytic properties", J. Phys. Chem. C, 115, 10131 (2011). https://doi.org/10.1021/jp201292d
  36. F. Barka-Bouaifel, B. Sieber, N. Bezzi, J. Benner, P. Roussel, L. Boussekey, and R. Boukherroub,"Synthesis and photocatalytic activity of iodine-doped ZnO nanoflowers", J. Mater. Chem., 21, 10982 (2011). https://doi.org/10.1039/c1jm11351h
  37. C. Shifu, Z. Wei, Z. Sujuan, and L. Wei, "Preparation, characterization and photocatalytic activity of N-containing ZnO powder", Chem. Eng. J., 148, 263 (2009). https://doi.org/10.1016/j.cej.2008.08.039
  38. S. Liu, C. Li, J. Yu, and Q. Xiang, "Improved visible-light photocatalytic activity of porous carbon self-doped ZnO nanosheet-assembled flowers", Cryst. Eng. Comm., 13, 2533 (2011). https://doi.org/10.1039/c0ce00295j
  39. X. Wang, S. Yao, and X. Li, "Sol-gel Preparation of CNT/ZnO Nanocomposite and Its Photocatalytic Property", Chin. J. Chem., 27, 1317 (2009). https://doi.org/10.1002/cjoc.200990220
  40. L. P. Zhu, G. H. Liao, W. Y. Huang, L. L. Ma, Y. Yang, Y. Yu, and S. Y. Fu, "Preparation, characterization and photocatalytic properties of ZnO-coated multi-walled carbon nanotubes", Mater. Sci. Eng. B. Solid State Mater. Adv. Technol., 163, 194 (2009). https://doi.org/10.1016/j.mseb.2009.05.021
  41. J. Mu, C. Shao, Z. Guo, Z. Zhang, M. Zhang, P. Zhang, and Y. Liu, "High photocatalytic activity of ZnO-carbon nanofiber heteroarchitectures", ACS Appl. Mater. Interfaces, 3, 590 (2011). https://doi.org/10.1021/am101171a
  42. Y. Yan, T. Chang, P. Wei, S. Z. Kang, and J. Mu, "Photocatalytic activity of nanocomposites of ZnO and multi-walled carbon nanotubes for dye degradation", J. Dispers. Sci. Technol., 30, 198 (2009). https://doi.org/10.1080/01932690802498310
  43. P. Wang, Y. Zhai, D. Wang, and S. Dong, "Synthesis of reduced graphene oxide-anatase TiO2 nanocomposite and its improved photo-induced charge transfer properties", Nanoscale, 3, 1640 (2011). https://doi.org/10.1039/c0nr00714e
  44. J. W. Ko, S. Jeon, and W. B. Ko, "Catalytic activity of nickel (II) oxide nanoparticle-(C60) fullerene nanowhisker composite for reduction of 4-nitroaniline", Fuller. Nanotub. Carb. N., 28, 1 (2020). https://doi.org/10.1080/1536383x.2019.1672300
  45. K. Miyazawa, "Synthesis of Fullerene Nanowhiskers using the liquid-liquid Interfacial Precipitation Method and their Mechanical, Electrical and Superconducting Properties", Sci. Technol. Adv. Mater., 16, 013502 (2015). https://doi.org/10.1088/1468-6996/16/1/013502
  46. H. Takeya, K. Miyazawa, R. Kato, T. Wakahara, T. Ozaki, H. Okazaki, T. Yamaguchi, and Y. Takano, "Superconducting fullerene nanowhiskers", Molecules, 17, 4851 (2012). https://doi.org/10.3390/molecules17054851
  47. H. Takeya, R. Kato, T. Wakahara, K. Miyazawa, T. Yamaguchi, T. Ozaki, H. Okazaki, and Y. Takano, "Preparation and superconductivity of potassium-doped fullerene nanowhisker", Mater. Res. Bull., 48, 343 (2013). https://doi.org/10.1016/j.materresbull.2012.10.033
  48. V. Krishnan, Y. Kasuya, Q. Ji, M. Sathish, L. K. Shrestha, S. Ishihara, K. Minami, H. Morita, T. Yamazaki, N. Hanagata, K. Miyazawa, S. Acharya, W. Nakanishi, J. P. Hill, and K. Ariga, "Vortex-aligned fullerene nanowhiskers as a scaffold for orienting cell growth", ACS Appl. Mater. Interfaces, 7, 15667 (2015). https://doi.org/10.1021/acsami.5b04811
  49. K. Minami, Y. Kasuya, T. Yamazaki, Q. Ji, W. Nakanishi, J. P. Hill, H. Sakai, and K. Ariga, "Highly ordered 1D fullerene crystals for concurrent control of macroscopic cellular orientation and differentiation toward large-scale tissue engineering', Adv. Mater., 27, 4020 (2015). https://doi.org/10.1002/adma.201501690
  50. T. Konno, C. Hirata, E. H. M. Ferreira, L. Ren, G. Piao, J. M. J. Garcia, F. M. Suarez, S. J. J. Sandoval, T. Wakahara, and K. Miyazawa, "Precise Raman measurements of C60 fullerene nanowhiskers synthesized using the liquid-liquid interfacial precipitation method", Trans. Mat. Res. Soc. Japan., 41, 289 (2016). https://doi.org/10.14723/tmrsj.41.289
  51. B. H. Cho, K. B. Lee, K. I. Miyazawa, and W. B. Ko, "Preparation of Fullerene (C60) Nanowhisker-ZnO Nanocomposites by Heat Treatment and Photocatalytic Degradation of Methylene Blue", Asian J. Chem., 25, 8027 (2013). https://doi.org/10.14233/ajchem.2013.14974
  52. R. Kato and K. Miyazawa, "Raman Laser Polymerization of C60 Nanowhiskers", J. Nanomater. 2012, 101243 (2012).
  53. J. W. Ko and W. B. Ko, "Catalytic Activity for Reduction of 4-Nitrophenol with (C60)Fullerene Nanowhisker-Silver Nanoparticle Composites", Mater. Trans., 57, 2122 (2016). https://doi.org/10.2320/matertrans.M2016214
  54. J. W. Ko and W. B. Ko, "Preparation of (C60)fullerene nanowhisker-silver nanoparticle composites and their catalytic activities for the oxidation of tetramethylbenzidine with hydrogen peroxide", Fuller. Nanotub. Car. N., 26, 851 (2018). https://doi.org/10.1080/1536383x.2018.1511542
  55. H. W. Yu, J. Wang, C. J. Xia, X. A. Yan, and P. F. Cheng, "Template-free hydrothermal synthesis of Flower-like hierarchical zinc oxide nanostructures", Optik, 168, 778 (2018). https://doi.org/10.1016/j.ijleo.2018.05.005
  56. M. G. B. M. Scepanovic, M. Grujic-Brojcin, K. Vojisavljevic, S. Bernik, and T. Sreckovic, "Raman study of structural disorder in ZnO nanopowders", J. Raman Spectrosc., 41, 914 (2010). https://doi.org/10.1002/jrs.2546
  57. N. A. Youssef, S. A. Shaban, F. A. Ibrahim, and A. S. Mahmoud, "Degradation of methyl orange using Fenton catalytic reaction", Egypt. J. Pet., 25, 317 (2016). https://doi.org/10.1016/j.ejpe.2015.07.017