DOI QR코드

DOI QR Code

Effect of Surface Modifying Agents Towards Enhancing Performance of Waste Gypsum Based PBAT Composite

  • Kong, Tae Woong (Department of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University) ;
  • Kim, In Tae (Department of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University) ;
  • Sinha, Tridib Kumar (Department of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University) ;
  • Moon, Junho (Department of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University) ;
  • Kim, Dong Ho (Space-Aeronautics & Advanced Non-Metal Material Center) ;
  • Kim, Inseon (Namhae Chemical Corp.) ;
  • Na, Kwangyong (Namhae Chemical Corp.) ;
  • Kim, Min-Woo (GSFILMS Co., Ltd.) ;
  • Kim, Hye-Lin (GSFILMS Co., Ltd.) ;
  • Hyeong, Taegyeong (Photochems Co., Ltd.) ;
  • Oh, Jeong Seok (Department of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University)
  • Received : 2020.12.03
  • Accepted : 2020.12.20
  • Published : 2020.12.31

Abstract

Stearic acid (SA), polyethylene glycol (PEG), and malic acid (MA) have been used to modify the surface of waste gypsum to develop corresponding poly (butylene adipate-co-terephthalate) (PBAT) composites. According to the mechanical properties, MA-treated gypsum (MA-gypsum) showed the best performance, whereas SA-gypsum showed the worst performance. In contrast to SA and PEG (having -COOH and -OH as polar functional groups, respectively), the presence of both -OH and -COOH in MA is responsible for the superior surface treatment of gypsum and its better dispersion in the polymer matrix (as revealed by FE-SEM analyses). The presence of long aliphatic chain in SA is supposed to inhibit the dispersion of SA-gypsum. Further, the performance of MA-gypsum/PBAT was enhanced by adding polylactic acid (PLA). The maximum optimized contents of MA-gypsum and PLA are 20 and 7.5 wt% for developing a high-performance PBAT composite.

Keywords

References

  1. F. V. Ferreira, L. S. Cividanes, R. F. Gouveia, and L. M. Lona, "An overview on properties and applications of poly (butylene adipate - co - terephthalate) - PBAT based composites", Polym. Eng. Sci., 59, E7 (2019). https://doi.org/10.1002/pen.24953
  2. F. V. Ferreira, I. F. Pinheiro, M. Mariano, L. S. Cividanes, J. C. M. Costa, N. R. Nascimento, S. P. R. Kimura, J. C. M. Neto, and L. M. F. Lona, "Environmentally friendly polymer composites based on PBAT reinforced with natural fibers from the amazon forest", Polym. Compos., 40, 3351 (2019). https://doi.org/10.1002/pc.25196
  3. V. S. Arutyunov and G. V. Lisichkin, "Energy resources of the 21st century: problems and forecasts. Can renewable energy sources replace fossil fuels", Russ. Chem. Rev., 86, 777 (2017). https://doi.org/10.1070/RCR4723
  4. R. L. Dunn, A. J. Tipton, G. L. Southard, and J. A. Rogers, U.S. patent 5324519 (1994).
  5. V. Siracusa, P. Rocculi, S. Romani, and M. Dalla Rosa, "Biodegradable polymers for food packaging: a review", Trends Food Sci Tech., 19, 634 (2008). https://doi.org/10.1016/j.tifs.2008.07.003
  6. S. Spierling, E. Knupffer, H. Behnsen, M. Mudersbach, H. Krieg, S. Springer, S. Albrecht, C. Herrmann, and H.-J. Endres, "Bio-based plastics - A review of environmental, social and economic impact assessments", J. Clean. Prod., 185, 476 (2018). https://doi.org/10.1016/j.jclepro.2018.03.014
  7. D. B. Rocha, J. Souza de Carvalho, S. A. de Oliveira, and D. dos Santos Rosa, "A new approach for flexible PBAT/PLA/CaCO3 films into agriculture", J. Appl. Polym. Sci., 135, 46660 (2018). https://doi.org/10.1002/app.46660
  8. M. J. Osman, N. A. Ibrahim, and W. M. Z. W. Yunus, "Effect of Modified Clay on the Morphological and Thermal Properties of PLA/PBAT Nanocomposites", Orient. J. Chem., 33, 3015 (2017). https://doi.org/10.13005/ojc/330639
  9. J., Xie, Z. Wang, Q. Zhao, Y. Yang, J. Xu, G. I. Waterhouse, K. Zhang, S. Li, P. Jin, and G. Jin, "Scale-Up Fabrication of Biodegradable Poly(butylene adipate-co-terephthalate)/Organophilic-Clay Nanocomposite Films for Potential Packaging Applications", ACS Omega, 3, 1187 (2018). https://doi.org/10.1021/acsomega.7b02062
  10. L. Jiang, M. P. Wolcott, and J. Zhang, "Study of Biodegradable Polylactide/Poly(butylene adipate-co-terephthalate) Blends", Biomacromolecules, 7, 199 (2006). https://doi.org/10.1021/bm050581q
  11. D. B. Rocha, J. Souza de Carvalho, S. A. de Oliveira, and D. dos Santos Rosa, "A new approach for flexible PBAT/PLA/CaCO3 films into agriculture", J. Appl. Polym. Sci., 135, 46660 (2018). https://doi.org/10.1002/app.46660
  12. Y. G. Denev, G. D. Denev, and A. N. Popov, "Surface Modification of Phosphogypsum Used as Reinforcing Material in Polyethylene Composites", J. Elastomers Plast., 41, 119 (2009). https://doi.org/10.1177/0095244308092436
  13. R. Lal and B. A. Stewart, "In Advances in soil science", ed. by R. Lal and B. A. Stewart, p. 111, Springer, New York, 1989.
  14. Y. Q. Zhao, "Involvement of Gypsum (CaSO4·2H2O) in Water Treatment Sludge Dewatering: A Potential Benefit in Disposal and Reuse", Sep. Sci. Technol., 41, 2785 (2006). https://doi.org/10.1080/01496390600785558
  15. J. W. Pressler, In The chemistry and technology of gypsum. ASTM International. 1984.
  16. Q. Xu, T. Townsend, and G. Bitton, "Inhibition of hydrogen sulfide generation from disposed gypsum drywall using chemical inhibitors", J. Hazard. Mater., 191, 204 (2011). https://doi.org/10.1016/j.jhazmat.2011.04.063
  17. M. Z. Rong, M. Q. Zhang, and W. H. Ruan, "Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: a review", Mater. Sci. Technol., 22, 787 (2006). https://doi.org/10.1179/174328406X101247
  18. S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, and R. Kumar, "Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites-A review", Prog. Polym. Sci., 38, 1232 (2013). https://doi.org/10.1016/j.progpolymsci.2013.02.003
  19. L. Jiang, B. Liu, and J. Zhang, "Properties of Poly(lactic acid)/Poly(butylene adipate-co-terephthalate)/Nanoparticle Ternary Composites", Ind. Eng. Chem. Res., 48, 7594 (2009). https://doi.org/10.1021/ie900576f
  20. K. J. Kim, J. L. White, S. Eun Shim, and S. Choe, "Effects of stearic acid coated talc, CaCO3, and mixed talc/CaCO3 particles on the rheological properties of polypropylene compounds", J. Appl. Polym. Sci., 93, 2105 (2004). https://doi.org/10.1002/app.20686
  21. J. L. Zhang, X. W. Wu, W. D. Ke, and Z. B. Li, "A well encapsulating stearic acid composite phase change material sealed by calcium carbonate", Phase Transit., 93, 100 (2020). https://doi.org/10.1080/01411594.2019.1679366
  22. B. Seo, S. Park, and K. Ha, "Effects of Surface Modification of Silica Nanoparticles on the Mechanical Properties of UV-curable Silica/Polyurethane Acrylate Nanocomposite", Polym. Korea, 40, 907 (2016). https://doi.org/10.7317/pk.2016.40.6.907
  23. X. Chen, Y. Zhu, B. Zhou, Y. Guo, W. Gao, Y. Ma, S. Guan, L. Wang, and Z. Wang, "Hydrophilic CaCO3 nanoparticles designed for poly (ethylene terephthalate)", Powder Technol., 204, 21 (2010). https://doi.org/10.1016/j.powtec.2010.07.002
  24. J. R. Ray, W. Wong, and Y. S. Jun, "Antiscaling efficacy of CaCO3 and CaSO4 on polyethylene glycol (PEG)-modified reverse osmosis membranes in the presence of humic acid: interplay of membrane surface properties and water chemistry", Phys. Chem. Chem. Phys., 19, 5647 (2017). https://doi.org/10.1039/C6CP08569E
  25. Y. Zhao, B. Liu, J. Yang, J. Jia, C. You, and M. Chen, "Effects of modifying agents on surface modifications of magnesium oxide whiskers", Appl. Surf. Sci., 388, 370 (2016). https://doi.org/10.1016/j.apsusc.2015.12.148
  26. P. Xu, R. Nehring, and R. Woodman, U.S. patent 20030055207 (2003).
  27. P. Xu and R. Nehring, U.S. patent 20040076574 (2004)
  28. N. Burgos, V. P. Martino, and A. Jimenez, "Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid", Polym. Degrad. Stab., 98, 651 (2013). https://doi.org/10.1016/j.polymdegradstab.2012.11.009