DOI QR코드

DOI QR Code

Thermo-responsive antifouling study of commercial PolyCera® membranes for POME treatment

  • Haan, Teow Yeit (Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia) ;
  • Chean, Loh Wei (Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia) ;
  • Mohammad, Abdul Wahab (Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia)
  • Received : 2019.04.01
  • Accepted : 2019.12.20
  • Published : 2020.03.25

Abstract

Membrane fouling is the main drawback of membrane technology. Frequent membrane cleaning and membrane replacement are, therefore, required to reduce membrane fouling that causes permeate flux reduction, lower rejection, or higher operating pressure. Studies have proved that the alteration of membrane properties is the key controlling factor in lessening membrane fouling. Among stimuli-responsive membranes, thermo-responsive membrane is the most popular, with a drastic phase transition and swelling-shrinking behavior caused by the temperature change. In this study, the thermo-responsive ability of two commercial membranes, PolyCera® Titan membrane and PolyCera® Hydro membrane, at different temperatures was studied on the antifouling function of the membrane in palm oil mill effluent (POME) treatment. The evaluation of the membrane's thermo-responsive ability was done through three cycles of adsorption (fouling) and desorption (defouling) processes in a membrane filtration process. The experimental result depicted that PolyCera® Hydro membrane had a higher membrane permeability of 67.869 L/㎡.h.bar than PolyCera® Titan membrane at 46.011 L/㎡.h.bar. However, the high membrane permeability of PolyCera® Hydro membrane was compensated with low removal efficiency. PolyCera® Titan membrane with a smaller mean pore size had better rejection performance than PolyCera® Hydro membrane for all tested parameters. On the other hand, PolyCera® Titan membrane had a better hydrodynamic cleaning efficiency than PolyCera® Hydro membrane regardless of the hydrodynamic cleaning temperature. The best hydrodynamic cleaning performed by PolyCera® Titan membrane was at 35℃ with the flux recovery ratio (FRR) of 99.17 ± 1.43%. The excellent thermo-responsive properties of the PolyCera® Titan membrane could eventually reduce the frequency of membrane replacement and lessen the use of chemicals for membrane cleaning. This outstanding exploration helps to provide a solution to the chemical industry and membrane technology bottleneck, which is the membrane fouling, thus reducing the operating cost incurred by the membrane fouling.

Keywords

Acknowledgement

Supported by : Dana Penyelidikan Strategik, Geran Universiti Penyelidikan

The authors gratefully acknowledge the funding given for this work by the Dana Penyelidikan Strategik (KRA2017-016) and Geran Universiti Penyelidikan (GUP-2017- 098).

References

  1. Abu Bakar, S.N.H., Abu Hasan, H., Mohammad, A.W., Abdullah, S.R.S., Haan, T.Y., Ngteni, R. and Khairul, M.M.Y. (2018), "A review of moving-bed biofilm reactor technology for palm oil mill effluent treatment", J. Cleaner Production, 171, 1532-1545. https://doi.org/10.1016/j.jclepro.2017.10.100
  2. Ahmed, I., Balkhair, K.S., Albeiruttye, M.H. and Shaiban, A.A.J. (2018), "Importance and significance of UF/MF membrane systems in desalination water treatment", In: Desalination, Chapter 10, p. 187.
  3. Alhaji, M.H., Sanaullah, K., Lim, S.F., Khan, A., Hipolito, C.N., Abdullah, M.O., Bhawani, S.A. and Jamil, T. (2016), "Photocatalytic treatment technology for palm oil mill effluent (POME) - A review", Process Safety and Environmental Protection, 102, 673-686. https://doi.org/10.1016/j.psep.2016.05.020
  4. Ayyaru, S. and Ahn, Y.-H. (2017), "Application of sulfonic acid group functionalized graphene oxide to improve hydrophilicity, permeability, and antifouling of PVDF nanocomposite ultrafiltration membranes", J. Membr. Sci., 525, 210-219. https://doi.org/10.1016/j.memsci.2016.10.048
  5. Bowen, W.R., Calvo, J.I. and Hernandez, A. (1995), "Steps of membrane blocking in flux decline during protein microfiltration", J. Membr. Sci., 101, 153-165. https://doi.org/10.1016/0376-7388(94)00295-A
  6. Breite, D., Went, M., Prager, A. and Schulze, A. (2016), "The critical zeta potential of polymer membranes: How electrolytes impact membrane fouling", RSC Advances, 6(100), 98180-98189. https://doi.org/10.1039/C6RA19239D
  7. Du, X., Zhang, Z., Carlson, K.H., Lee, J. and Tong, T. (2018), "Membrane fouling and reusability in membrane distillation of shale oil and gas produced water: Effects of membrane surface wettability", J. Membr. Sci., 567, 199-208. https://doi.org/10.1016/j.memsci.2018.09.036
  8. Fang, Y. and Duranceau, S.J. (2013), "Study of the effect of nanoparticles and surface morphology on reverse osmosis and nanofiltration membrane productivity", Membranes, 3(3), 196-225. https://doi.org/10.3390/membranes3030196
  9. Feng, C., Khulbe, K., Matsuura T. and Ismail, A. (2012), "Progresses in membrane and advanced oxidation processes for water treatment", Membr. Water Treat., Int. J., 3(3), 181-200. https://doi.org/10.12989/mwt.2012.3.3.181
  10. Ghani, M.S.H., Haan, T.Y., Lun, A.W., Mohammad, A.W., Ngteni, R. and Yusof, K.M.M. (2017), "Fouling assessment of tertiary palm oil mill effluent (POME) membrane treatment for water reclamation", J. Water Reuse Desal., 8(3), 412-423. https://doi.org/10.2166/wrd.2017.198
  11. Ho, K.C., Teow, Y.H., Ang, W.L. and Mohammad, A.W. (2017), "Novel GO/OMWCNTs mixed-matrix membrane with enhanced antifouling property for palm oil mill effluent treatment", Separ. Purif. Technol., 177, 337-349. https://doi.org/10.1016/j.seppur.2017.01.014
  12. Ho, K.C., Teow, Y.H., Mohammad, A.W., Ang, W.L. and Lee, P.H. (2018), "Development of graphene oxide (GO)/multi-walled carbon nanotubes (MWCNTs) nanocomposite conductive membranes for electrically enhanced fouling mitigation", J. Membr. Sci., 552, 189-201. https://doi.org/10.1016/j.memsci.2018.02.001
  13. Hosseini, S.E. and Abdul Wahid, M. (2015), "Pollutant in palm oil production process", J. Air Waste Manag. Assoc., 65(7), 773-781. https://doi.org/10.1080/10962247.2013.873092
  14. Ibrahim, R.I., Mohammad, A.W. and Wong, Z.H. (2015), "Optimization of POME treatment process using microalgae and ultrafiltration", Membr. Water Treat., Int. J., 6(4), 293-308. https://doi.org/10.12989/mwt.2015.6.4.293
  15. Ismail, S., Idris, I., Ng, T.Y. and Ahmad, A.L. (2014), "Coagulation of palm oil mill effluent (POME) at high temperature", J. Appl. Sci., 14(12), 1352-1254. https://doi.org/10.3923/jas.2014.1351.1354
  16. Khatun, R., Reza, M.I.H., Moniruzzaman, M. and Yaakob, Z. (2017), "Sustainable oil palm industry: The possibilities", Renew. Sustain. Energy Rev., 76, 608-619. https://doi.org/10.1016/j.rser.2017.03.077
  17. Mohammed, R.R., Ketabchi, M.R. and McKay, G. (2014), "Combined magnetic field and adsorption process for treatment of biologically treated palm oil mill effluent (POME)", Chem. Eng. J., 243, 31-42. https://doi.org/10.1016/j.cej.2013.12.084
  18. Pogaku, R., Yong, K.Y. and Veera Rao, V.P.R. (2015), "Production of biogas from palm oil mill effluent", In Ravindra, P. (eds), Adv. Bioprocess Technol., Springer, Cham.
  19. Rana, D. and Matsuura, T. (2010), "Surface modifications for antifouling membranes", Chem. Revi., 110(4), 2448-2471. https://doi.org/10.1021/cr800208y
  20. Rana, D., Matsuura, T., Kassim, M.A. and Ismail, A.F. (2015), "Reverse osmosis membrane", In: Handbook of Membrane Separations: Chemical, Pharmaceutical, Food, and Biotechnological Applications, Pabby, A.K., Rizvi, S.S.H., Sastre, A.M. (Eds.), 2nd Ed., Taylor & Francis / CRC Press, Boca Raton, FL, Chapter 3, pp. 35-52.
  21. Said, M., Ahmad, A., Mohammad, A.W., Nor, M.T.M. and Abdullah, S.R.S. (2015), "Blocking mechanism of PES membrane during ultrafiltration of POME", J. Industr. Eng. Chem., 21, 182-188. https://doi.org/10.1016/j.jiec.2014.02.023
  22. Said, M., Abu Hasan, H., Nor, M.T.M. and Mohammad, A.W. (2016), "Removal of COD, TSS and color from palm oil mill effluent (POME) using montmorillonite", Desal. Water Treat., 57(23), 10490-10497. https://doi.org/10.1080/19443994.2015.1036778
  23. Sajjad, A.-A., Haan, T.Y. and Mohammad, A.W. (2018), "Sustainable approach of recycling palm oil mill effluent (POME) using integrated biofilm/membrane filtration system for internal plant usage", Jurnal Teknologi, 80(4), 165-172. https://doi.org/10.11113/jt.v80.11054
  24. Takriff, M.S., Zakaria, M.Z., Shaiful, S.M. and Haan, T.Y. (2016), "Pre-treatments anaerobic palm oil mill effluent (POME) for microalgae treatment", Indian J. Sci. Technol., 9(12), 95248. https://doi.org/10.17485/ijst/2016/v9i21/95248
  25. Teow, Y.H. (2014), "PVDF-$TiO_2$ mixed-matrix membrane with antifouling properties for humic acid removal", Ph.D. Dissertation; School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, Malaysia.
  26. Teow, Y.H., Ooi, B.S., Ahmad, A.L. and Lim, J.K. (2012), "Mixed-matrix membrane for humic acid removal: Influence of different types of $TiO_2$ on membrane morphology and performance", Int. J. Chem. Eng. Applicat., 3(6), 374-379.
  27. Teow Y.H., Mohammad, A.W., Hamdan, W.N.A.W.M., Ghani, M.S.H., Ngteni, R. and Yusof, K.M.M. (2016), "Pilot-scale integrated pretreatment/membrane filtration system for aerobic palm oil mill effluent (POME) treatment", Proceedings of the 2016 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM16), Jeju Island, Korea, August-September.
  28. Teow, Y.H., Ooi, B.S. and Ahmad, A.L. (2017), "Study on PVDF-$TiO_2$ mixed-matrix membrane behavior towards humic acid adsorption", J. Water Process Eng., 15, 99-106. https://doi.org/10.1016/j.jwpe.2016.04.005
  29. Teow, Y.H., Mubassir, S. Ho, K.C. and Mohammad, A.W. (2018), "A study on membrane technology for surface water treatment: Synthesis, characterization and performance test", Membr. Water Treat., Int. J., 9(2), 69-77. https://doi.org/10.12989/mwt.2018.9.2.069
  30. Wang, G., Xie, R., Ju, X.-J. and Chu L.-Y. (2012), "Thermo-responsive polyethersulfone composite membranes blended with poly(N-isopropylacrylamide) nanogels", Chem. Eng. Technol., 35(11), 2015-2022. https://doi.org/10.1002/ceat.201200235
  31. Zeng, P., Wang, K., Falkenstein-Smith, R.L. and Ahn, J. (2015), "Effects of sintering temperature on the performance of $SrSc_{0.1}Co_{0.9}O_{3-{\delta}}$ oxygen semipermeable membrane", Brazil. J. Chem. Eng., 32(3), 757-765. https://doi.org/10.1590/0104-6632.20150323s00003269
  32. Zhang, M., Liao, B.-q., Zhou, X., He, Y., Hong, H., Lin, H. and Chen, J. (2015), "Effects of hydrophilicity/hydrophobicity of membrane on membrane fouling in a submerged membrane bioreactor", Bioresource Technol., 175, 59-67. https://doi.org/10.1016/j.biortech.2014.10.058
  33. Zhang, Y., Yan, L., Qiao, X., Chi, L., Niu, X., Mei, Z. and Zhang, Z. (2008), "Integration of biological method and membrane technology in treating palm oil mill effluent", J. Environ. Sci., 20(5), 558-564. https://doi.org/10.1016/S1001-0742(08)62094-X
  34. Zhou, S., Xue, A., Zhang, Y., Li, M., Wang, J., Zhao, Y. and Xing, W. (2014), "Fabrication of temperature-responsive $ZrO_2$ tubular membranes, grafted with poly (N-isopropylacrylamide) brush chains, for protein removal and easy cleaning", J. Membr. Sci., 450, 351-361. https://doi.org/10.1016/j.memsci.2013.09.011

Cited by

  1. Exploration of shockwaves on polymeric membrane physical properties and performance vol.12, pp.1, 2020, https://doi.org/10.12989/mwt.2021.12.1.043