DOI QR코드

DOI QR Code

충남 효교리 농업지역 천부지하수의 화학적 특성

Chemical Characteristics of Shallow Groundwater in an Agricultural District of Hyogyo-ri Area, Chungnam Province

  • 전항탁 (부산대학교 지질환경과학과) ;
  • 함세영 (부산대학교 지질환경과학과) ;
  • 최은경 ((주)지아이) ;
  • 김현구 (국립환경과학원 토양지하수과) ;
  • 김문수 (국립환경과학원 토양지하수과) ;
  • 박기훈 ((주)지오그린21) ;
  • 임우리 (부산대학교 지질환경과학과)
  • Jeon, Hang-Tak (Department of Geological Sciences, Pusan National University) ;
  • Hamm, Se-Yeong (Department of Geological Sciences, Pusan National University) ;
  • Choi, Eun-Gyeong (GI Co.) ;
  • Kim, HyunKoo (Soil and Groundwater Research Division, National Institute of Environmental Research) ;
  • Kim, MoonSu (Soil and Groundwater Research Division, National Institute of Environmental Research) ;
  • Park, Ki-Hoon (Geogreen 21 Co.) ;
  • Lim, Woo-Ri (Department of Geological Sciences, Pusan National University)
  • 투고 : 2020.12.13
  • 심사 : 2020.12.24
  • 발행 : 2020.12.31

초록

농촌지역에서는 농업활동의 영향에 의한 질산성질소 오염이 천부지하수를 생활용수나 먹는물로 사용하는데 큰 장애요인이 되고 있다. 본 연구에서는 충남 예산군 효교리 농업지역의 천부지하수의 수질특성을 토지용도 및 토양층의 화학성분과 연계하여 고찰하였다. 지하수의 NO3-N 평균 농도는 생활용수와 농업용수 수질 기준을 초과하며, 이는 비료, 축산폐수, 생활하수 등의 인위적인 오염원으로부터 유래하는 것으로 판단된다. 연구지역 지하수 수질형은 주로 Ca(Na)-Cl형에 속하는 것으로 나타나며, 일반적인 천부지하수의 수질형인 Ca-HCO3형과는 다르다. 논 및 기타(상류, 목장, 주거)지역과 밭 지역으로 구분하여 지하수의 NO3-N 농도를 비교한 결과, 밭 지역의 NO3-N의 평균 농도는 22.8 mg L-1 이고, 논 및 기타 지역의 NO3-N 평균 농도는 7.7 mg L-1로서 밭 지역의 NO3-N의 평균 농도가 높게 나타난다. 이는 논지역이 낮은 투수성을 가지고, 밭지역은 높은 투수성을 가지기 때문이다. Mann-Kendall 검정과 Sen 검정에 의한 경향성 분석에 의하면, NO3-N 농도는 매년 0.011 mg/L 정도로 매우 약한 감소 추세를 보여주고 있으며, 이는 현재 지하수내 NO3-N 농도가 거의 평형상태에 있음을 지시한다. 한편 SO42- 농도는 매년 -15.48% 씩 감소하며, HCO3- 농도는 매년 -13.75% 씩 감소하는 것으로 나타났다. 입도분석에 의한 수리전도도는 지표하 5m까지의 심도에서 평균 1.86×10-5 cm s-1을 보이며, 모래층에서는 1.03×10-4 cm s-1을 그리고 실트층에서는 2.50×10-8 cm s-1을 보인다.

In rural areas, nitrate-nitrogen (NO3-N) pollution caused by agricultural activities is a major obstacle to the use of shallow groundwater as domestic water or drinking water. In this study, the water quality characteristics of shallow groundwater in Hyogyo-ri agricultural area of Yesan-gun, Chungcheongnam-do province was studied in connection with land use and chemical composition of soil layer. The average NO3-N concentration in groundwater exceeds the domestic and agricultural standard water qualities of Korea and is caused by anthropogenic sources such as fertilizer, livestock wastewater, and domestic sewage. The groundwater type mainly belongs to Ca(Na)-Cl type, unlike Ca-HCO3 type, a general type of shallow groundwater. The average NO3-N concentration (7.7 mg L-1) in groundwater in rice paddy/other (upstream, ranch, and residential) area is lower than the average concentration (22.8 mg L-1) in farm field area, due to a lower permeability in paddy area than that in farm field area. According to the trend analysis by the Mann-Kendall and Sen tests, the NO3-N concentration in the shallow groundwater shows a very weak decreasing trend with ~0.011 mg L-1yr-1 with indicating almost equilibrium state. Meanwhile, SO42- and HCO3- concentrations display annual decreasing trend by 15.48 and 13.15%, respectively. At a zone of 0 to 5 m below the surface, the average hydraulic conductivity is 1.86×10-5 cm s-1, with a greater value (1.03×10-4cm s-1) in sand layer and a smaller value (2.50×10-8 cm s-1) in silt layer.

키워드

과제정보

이 연구는 환경부(국립환경과학원)의 농축산지역 지하수중 질산성질소 수질관리 개선사업(NIER-2020-04-02-052)과 과학기술정보통신부의 한국연구재단 중견연구사업 (NRF-2017R1A2B2009033)으로 수행되었습니다.

참고문헌

  1. Arthur, W. H., 1995, Water quality data-analysis and interpretation. CRC Press, 416 p.
  2. Beyer, W., 1964, On the determination of hydraulic conductivity of gravels and sands from grain-size distribution. Wasserwirtschaft-Wassertechnik, 14, 165-169 (in German).
  3. Burow, K.R., Nolan, B.T., Rupert, M.G., and Dubrovsky, N.M., 2010, Nitrate in groundwater in the United States. Environmental Science and Technology, 44, 4988-4997. https://doi.org/10.1021/es100546y
  4. Carman, P.C., 1938, The determination of the specific surface of powders. Journal of the Society of Chemical Industries, 57, 225-234.
  5. Carman, P.C., 1956, Flow of gases through porous media. Academic Press, 182 p.
  6. Choi, W.J., Han, G.H., Ro, H.M., Yun, S.H., and Lee, S.M., 2002, Evaluation of nitrate contamination sources of unconfined groundwater in the North Han River basin of Korea using nitrogen isotope ratios. Geosciences Journal, 6, 47-55. https://doi.org/10.1007/BF02911335
  7. Cho, K.-H., Kim, B.-J., Ahn, J.-H., Rhim, K.-S., Choi, N.-C., and Park, C.-Y., 2013, Design parameters of riverbed filtration estimated from geochemical data. The Journal of Engineering Geology, 23(4), 493-502 (in Korean). https://doi.org/10.9720/kseg.2013.4.493
  8. Gilbert, R.O., 1987, Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold Co., NY, 320 p.
  9. Greenberg, A.E., Clesceri, E.L.S., and Eaton, A.D., 1992, Standard Methods for the Examination of Water and Wastewater. 18th ed. American Public Health Association, 1100 p.
  10. Hamilton, P.A. and Helsel, D.R., 1995, Effects of agriculture on groundwater quality in five regions of the United States. Groundwater, 33, 217-226. https://doi.org/10.1111/j.1745-6584.1995.tb00276.x
  11. Hazen, A., 1892, Some physical properties of sands and gravels. Annu. Rept. Massachusetts State Board of Health, 539-556.
  12. Kang, L.-S., Hamm, S.-Y., Cheong, J.-Y., Jeon, H.-T., and Park, J.-H., 2020, Groundwater monitoring system and groundwater policy in relation to unified water resource management in Korea. Water Policy, 22(2), DOI:10.2166/wp.2020.171.
  13. Kasenow, M., 2002, Determination of hydraulic conductivity from grain size analysis. Water Resources Publications, LLC, Highland Ranch, CO, USA, 83 p.
  14. Kendall, M.G., 1975, Rank Correlation Methods. 4th edition, Charles Griffin, London 202 p.
  15. Kim, J.S., 2019, Plan of sustainable groundwater utilization and management. National Assembly Research Service, 84 p (In Korean).
  16. Kim, K.-H., Yun, S.-T., Chae, G.-T., Choi, B.-Y., Kim, S.-O., Kim, K., Kim, H.-S., and Lee, C.-W., 2002, Nitrate contamination of alluvial groundwaters in the Keum River watershed area: source and behaviors of nitrate, and suggestion to secure water supply. The Journal of Engineering Geology, 12(4), 471-484 (in Korean).
  17. Kim, Y.-T. and Woo, N.-C., 2003, Nitrate contamination of shallow groundwater in an agricultural area having intensive livestock facilities. Journal of Soil and Groundwater Environment, 8(1), 57-67 (in Korean).
  18. Kozeny, J., 1927, Uber kapillare leitung des wassers im boden. Sitzungsber Academica Wiss Wien, 136, 271-306 (in German).
  19. Lee, C.-M., Hamm, S.-Y., , Cheong, J.-J., Kim, K., Yoon, H., Kim, M.S., and Kim, J., 2020, Contribution of nitrate-nitrogen concentration in groundwater to streamwater in an agricultural head watershed. Environmental Research, 184, https://doi.org/10.1016/j.envres.2020.109313.
  20. Lee, C.-M., Hamm, S.-Y., Jeon, H.-T., Kim, M.S., Kim, H.-K., and Kim, K., 2017, Water policy of Korea for supplying safe groundwater in rural areas. Water, 9(7), 508; https://doi.org/10.3390/w9070508.
  21. Lee, I.-G. and Choi, S.-H., 2012, Hydro-geochemical nature and nitrates contamination charecters of groundwater in the Youngdong, Chungbuk Province. Economic Environent Geology, 45(1), 23-30. (in Korean) https://doi.org/10.9719/EEG.2012.45.1.023
  22. Lee, I.G. and Choi, S.H., 2010, Geochemical characteristics and nitrates contamination of shallow groundwater in the Ogcheon area. Economic Environent Geology, 43, 43-52. (in Korean)
  23. Mann, H.B., 1945, Non-parametric tests against trend. Econometrica, 13, 163-171.
  24. Maupin, M.A., Kenny, J.F., Hutson, S.S., Lovelace, J.K., Barber, N.L., and Linsey, K.S., 2014, Estimated use of water in the United States in 2010. U.S. Geological Survey Circular 1405 p.
  25. Medison, R. J. and Brunett, J. O., 1985, Overview of the occurrence of nitrate in ground water of the United States. national water summary 1984 hydrologic events, selected water-quality trends, and ground-water resources. U.S. Geologcal Survey Water-Supply Paper, 2275, 93-105.
  26. Michalski, R., Muntean, E., Pecyna-utylska, P., and Kernert J., 2019, Ion chromatography-an advantageous technique in soil analysis. ProEnvironment, 12, 82-88.
  27. Ministry of Environment, 2001, Groundwater quality management and purification plan establishment. 176p.
  28. Ministry of Water Resources, 2011a, 2010 Statistic Bulletin on China Water Activities. Seoul, Korea.
  29. Ministry of Water Resources, 2011b, Water Resources Bulletin of China 2010. Seoul, Korea.
  30. Mueller, D.K. and Heisel, D.R., 1996, Nutrients in the nation's water-Too much of a good thing?. U.S. Geological Survey Circular, 1136 p.
  31. National Institute of Environmental Research (NIER), 2016, Case study of groundwater management for drinking in highly contaminated area (III). 50 p.
  32. Nordstrom, D.K., Ball, J.W., Donahoe, R.J. and Whittemore, D., 1989, Groundwater chemistry and water-rock interactions at Stripa. Geochimica et Cosmochimica Acta, 53, 1727-1740. https://doi.org/10.1016/0016-7037(89)90294-9
  33. Pastn-Zapata, E., Ledesma-Ruiz, R., Harter, T., Ramrez, A.I., and Mahlknecht, J., 2014, Assessment of sources and fate of nitrate in shallow groundwater of an agricultural area by using a multi-tracer approach. Science of Total Environment, 470-471, 855-865. https://doi.org/10.1016/j.scitotenv.2013.10.043
  34. Preda, C., Saporta, G. and Mbarek, M.H.B.H., 2010, The NIPALS Algorithm for missing functional data. Romaniane Journal of Pure and applied Mathmatics, 55(4), 315-326
  35. Sen, P.K., 1968, Estimates of the regression coefficient based on Kendall's tau. Journal of the American Statistical Association, 63, 1379-1389. https://doi.org/10.1080/01621459.1968.10480934
  36. Shen, D., 2015, Groundwater management in China. Water Policy, 17(1), 61-82. https://doi.org/10.2166/wp.2014.135
  37. lichter, C.S., 1899, Theoretical investigation of the motion of groundwaters. US Geol Surv 19th Annual Report Part 2, 295-384.
  38. Spalding, R.F. and Exner, M.E., 1993, Occurrence of Nitrate in Groundwater-A Review. Journal of Environmental Quality, 22, 392-402. https://doi:10.2134/jeq1993.00472425002200030002x.
  39. United States Department of Agriculture (USDA), 1987, Soil mechanics level 1, Module 3, USDA Textural Classification Study Guide, National Employee Development Staff, Soil Conservation Service. U.S. Department of Agriculture, Washington, DC.
  40. Yun, S.W., Jeon, W.-H. and Lee, J.-Y., 2017, Evaluation of hydrochemical characteristics of groundwater and stream water in a heavy agricultural region of the Haean basin. Korea. Journal of the Geological Society of Korea. 53(5), 727-742. (in Korean) https://doi.org/10.14770/jgsk.2017.53.5.727