DOI QR코드

DOI QR Code

A Study on the Flow Assurance in Subsea Pipeline Considering System Availability of Topside in LNG-FPSO

LNG-FPSO에서 상부구조물의 시스템 가용도를 고려한 해저 배관의 유동안정성 연구

  • Kim, Young-Min (Petroleum&Marine Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Choi, Jun-Ho (Institute of Technology, Gwang-Sung GM) ;
  • Lee, Jeong-Hwan (Dept. of Energy and Resources Engineering, Chonnam National University)
  • 김영민 (한국지질자원연구원 석유해저연구본부) ;
  • 최준호 (광성지엠(주)) ;
  • 이정환 (전남대학교 에너지자원공학과)
  • Received : 2020.11.02
  • Accepted : 2020.12.02
  • Published : 2020.12.31

Abstract

This study presents flow assurance analysis in subsea pipeline considering system availability of topside in LNG-FPSO. A hydrate management strategy was established, which consisted of PVCap experiments, system availability analysis of LNG-FPSO topside, hydrate risk analysis in the pipeline, and calculation of PVCap injection concentration. The experimental data required for the determination of PVCap injection concentration were obtained by measuring the hydrate induction time of PVCap at the subcooling temperatures of 6.1, 9.2, and 12.1℃. The availability of LNG-FPSO topside system for 20 years was 89.3%, and the longest downtime of 50 hours occurred 2.9 times per year. The subsea pipeline model for multiphase flow simulation was created using field geometry data. As a result of risk analysis of hydrate plugging using subsea pipeline model, hydrate was formed at the end of flowline in 23.2 hours under the condition of 50 hours shutdown. The injection concentration of PVCap was determined based on the PVCap experiment results. The hydrate plugging in subsea pipeline of LNG-FPSO can be completely prevented by injecting PVCap 0.25 wt% 2.9 times per year.

본 연구에서는 LNG-FPSO 상부구조물의 시스템 가용도를 고려한 해저 유동관내 유동안정성 연구를 수행하였다. 이를 위해 PVCap 억제 성능 평가 실험, LNG-FPSO 상부구조물 가용도 분석, 유동관내 하이드레이트 위험도 평가, PVCap 주입 농도 산출로 구성된 하이드레이트 관리 전략을 수립하였다. 과냉각 온도 6.1, 9.2, 12.1℃에 따라 PVCap의 하이드레이트 지연시간을 측정함으로써 PVCap 주입 농도 결정에 필요한 실험 기준을 확보하였다. 시스템 가용도 분석을 통해 산출된 20년 동안의 LNG-FPSO 상부구조물의 가용도는 89.3%이며, 50시간의 최장 고장 시간이 연간 2.9회 발생하였다. 현장 자료를 이용하여 다상 유동 시뮬레이션을 위한 유동관 모델을 구축하였다. 다상 유동 시뮬레이션을 통해 하이드레이트 플러깅 위험도를 예측한 결과, 50시간의 생산 중단 조건에서는 23.2시간 만에 유동관 끝단에서 하이드레이트가 발생하는 것을 확인하였다. 하이드레이트 방지를 위해 PVCap 실험 결과를 기반으로 PVCap 주입 농도를 산출하였으며, 0.25 wt%의 PVCap을 연간 2.9회 주입하면 하이드레이트 플러깅을 방지할 수 있을 것으로 판단된다.

Keywords

References

  1. Lee, S., Kang, D., Lee, J., and Lee, S., "A Study on the Development of Maintenance System for Equipment of LNG-FPSO Ship", Journal of the Korean Society of Marine Environment and Safety, 22(2), 233-239, (2016) https://doi.org/10.7837/kosomes.2016.22.2.233
  2. Carroll, J., Natural Gas Hydrates A Guide For Engineers, Gulf Professional Publishing, Elsevier, USA, 17-23, (2014)
  3. Lee, J., Baek, Y., and Sung, W., "A Study on the Formation of Hydrate Plugging due to water molecules in High Pressure and Low Temperature Gas Pipeline", KIGAS, 6(1), 38-45, (2002)
  4. Lee, J., Baek, Y., and Sung, W., "The Kinetics on Hydrate Formation in Pipelines", Energy Sources, Part A, 27(9), 875-885, (2005) https://doi.org/10.1080/00908310490479097
  5. Zio, E., The Monte Carlo Simulation Method for Reliability and Risk Analysis, Series in Reliability Engineering, Springer, London, (2013)
  6. Kim, J., Chang, D., Chang, K., and Noh, Y. "Determination of Hydrate Injection Rate for Flowline Based on Monte Carlo Method", Journal of Loss Prevention in the Process Industries, 44, 62-72, (2016) https://doi.org/10.1016/j.jlp.2016.08.012
  7. Kim, J., Seo, Y., Kang, S.P., Kim, H., Sohn, Y.H., and Chang, D. "Prevention of Methane Hydrate Re-formation in Transport Pipeline Using Thermodynamic and Kinetic Hydrate Inhibitors", Journal of Petroleum Science and Engineering, 154, 114-125, (2017) https://doi.org/10.1016/j.petrol.2017.04.011
  8. Park, J., Kim, H., Sheng, Q., Wood, C.D., and Seo, Y. "Kinetic Hydrate Inhibition Performance of Polyvinyl caprolactam Modified with Corrosion Inhibitor Groups", Energy & Fuels, 31(9), 9363-9373, (2017) https://doi.org/10.1021/acs.energyfuels.7b01956
  9. Lee, J., "The Development Status and Prospect for the Production Technology of Gas Hydrate", KSGE, 46( 3), 387-401, (2009)
  10. Sloan, E.D. and Koh, C.A., Clathrate Hydrates of Natural Gases, 3rd ed., CRC Press, USA, (2008)
  11. Lee, J., Baek, Y., and Sung, W., "Effect of Flow Velocity and Inhibitor on Formation of Methane Hydrates in High Pressure Pipeline", Journal of Industrial and Engineering Chemistry, 8(5), 493-498, (2002)
  12. Makogon, T.Y., Larsen, R., Knight, C., and Sloan Jr., E.D. "Melt Growth of Tetrahydrofuran Clathrate Hydrate and its Inhibition: Method and First Results", Journal of Crystal Growth, 179, 258-262, (1997) https://doi.org/10.1016/S0022-0248(97)00118-8
  13. Yang, J., and Tohidi, B., "Characterization of inhibition mechanisms of kinetic hydrate inhibitors using ultrasonic test technique", Chemical Engineering Science, 66, 278-283, (2011) https://doi.org/10.1016/j.ces.2010.10.025
  14. Kim, Y., Choi, J., and Lee, J., "Experimental Study on the Inhibition Effect of PVCap to Prevent Formation of Hydrate in Subsea Flow-line", KIGAS, 24(5), 56-64, (2020)
  15. Chin, Y.D., and Srivastava, A. "Advances in LDHIs and Applications", Offshore Technology Conference, 1-19, (2018)
  16. Afonso, I.I.Q. "A Study on the Application of Kinetic Hydrate Inhibitor in Subsea Flowline Considering the System Availability of Offshore Gas Platform", Master's Thesis, Chonnam National University, (2018)
  17. Kim, Y., Afonso, I.I.Q., Jang, H., and Lee, J. "Prevention of Hydrate Plugging by Kinetic Inhibitor in Subsea Flowline Considering the System Availability of Offshore Gas Platform", Journal of Industrial and Engineering Chemistry, 82, 349-358, (2020) https://doi.org/10.1016/j.jiec.2019.10.034
  18. Noh, Y., Chang, K., Seo, Y., and Chang, D., "Risk-based Determination of Design Pressure of LNG Fuel Storage Tanks Based on Dynamic Process Simulation Combined with Monte Carlo Method", Reliability Engineering & System Safety, 129, 76-82, (2014) https://doi.org/10.1016/j.ress.2014.04.018
  19. SINTEF, Offshore Reliability Data Handbook, Det Norske Veritas, Norway, (2015)
  20. Shell Australia, Prelude FLNG Environment Plan Summary, Shell Australia Pty Ltd, (2017)