DOI QR코드

DOI QR Code

Isolation and Characterization of Microbial Strains with Hydrolytic Enzyme Profile from Clay Minerals

  • Lee, Sulhee (Research Group of Healthcare, Korea Food Research Institute) ;
  • Cho, Eui-Sang (Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University) ;
  • Nam, Young-Do (Research Group of Healthcare, Korea Food Research Institute) ;
  • Park, So-Lim (Research Group of Healthcare, Korea Food Research Institute) ;
  • Lim, Seong-Il (Research Group of Healthcare, Korea Food Research Institute) ;
  • Seo, Dong-Ho (Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University) ;
  • Kim, Jae-Hwan (Advanced Geo-materials Research Department, Pohang Branch, Korea Institute of Geoscience and Mineral Resources) ;
  • Seo, Myung-Ji (Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University)
  • 투고 : 2019.10.30
  • 심사 : 2019.11.12
  • 발행 : 2020.03.28

초록

A total of 262 bacterial strains were isolated from clay minerals, bentonite and zeolite, in Gyeongsangbukdo, Republic of Korea, and their hydrolytic enzyme activities were analyzed. Most of the isolated strains belonged to Micrococcales and Bacillales order. Of strains, 96 strains produced α-amylase activity, 42 strains showed cellulase activity, 111 strains had pectinase activity, and 70 strains showed protease activity. Among them, 177 isolates exhibited one or more of the hydrolytic enzyme activities and in particular Bacillus cereus MBLB1321, B. albus MBLB1326 and KIGAM017, B. mobilis MBLB1328, MBLB1329 and MBLB1330 showed all of the enzyme activities. These results demonstrate the diversity of functional Bacillus species in clay minerals as vital sources for the discovery of industrially valuable hydrolytic enzymes, which have a great commercial prospect in various bio-industrial applications.

키워드

참고문헌

  1. Carretero MI. 2002. Clay minerals and their beneficial effects upon human health. A review. Appl. Clay Sci. 21: 155-163. https://doi.org/10.1016/S0169-1317(01)00085-0
  2. Murray HH. 2000. Traditional and new applications for kaolin, smectite, and palygorskite: A general overview. Appl. Clay Sci. 17: 207-221. https://doi.org/10.1016/S0169-1317(00)00016-8
  3. Barton CD, Karathanasis AD. 2002. Clay minerals, pp. 187-192. In Lal R (ed.), Encyclopedia of Soil Science, 2nd Ed. Marcel Dekker, New York.
  4. Guggenheim S, Martin R. 1995. Definition of clay and clay mineral: joint report of the AIPEA nomenclature and CMS nomenclature committees. Clay. Clay Miner. 43: 255-256. https://doi.org/10.1346/CCMN.1995.0430213
  5. Slamova R, Trckova M, Vondruskova H, Zraly Z, Pavlik I. 2011. Clay minerals in animal nutrition. Appl. Clay Sci. 51: 395-398. https://doi.org/10.1016/j.clay.2011.01.005
  6. Rozic M, Cerjan-Stefanovic S, Kurajica S, Vančina V, Hodzic E. 2000. Ammoniacal nitrogen removal from water by treatment with clays and zeolites. Water Res. 34: 3675-3681. https://doi.org/10.1016/S0043-1354(00)00113-5
  7. Eroglu N, Emekci M, Athanassiou CG. 2017. Applications of natural zeolites on agriculture and food production. J. Sci. Food Agric. 97: 3487-3499. https://doi.org/10.1002/jsfa.8312
  8. Al Dwairi RA, Al-Rawajfeh AE. 2012. Recent patents of natural zeolites applications in environment, agriculture and pharmaceutical industry. Recent Patents Chem. Eng. 5: 20-27. https://doi.org/10.2174/1874478811205010020
  9. Saengmee-anupharb S, Srikhirin T, Thaweboon B, Thaweboon S, Amornsakchai T, Dechkunakorn S, et al. 2013. Antimicrobial effects of silver zeolite, silver zirconium phosphate silicate and silver zirconium phosphate against oral microorganisms. Asian Pac. J. Trop. Biomed. 3: 47-52. https://doi.org/10.1016/S2221-1691(13)60022-2
  10. SivaRaman H, Chandwadkar A, Baliga SA, Prabhune AA. 1994. Effect of synthetic zeolite on ethanolic fermentation of sugarcane molasses. Enzyme Microb. Technol. 16: 719-722. https://doi.org/10.1016/0141-0229(94)90096-5
  11. Uddin F. 2018. Montmorillonite: An Introduction to Properties and Utilization, pp. 3-23. In Zoveidavianpoor M (ed.), Current Topics in the Utilization of Clay in Industrial and Medical Applications, IntechOpen, London.
  12. Kang J, Chung WH, Nam Y Do, Kim D, Seo SM, Lim S Il, et al. 2018. Impact of clay minerals on bacterial diversity during the fermentation process of kimchi. Appl. Clay Sci. 154: 64-72. https://doi.org/10.1016/j.clay.2017.12.018
  13. Mueller B. 2015. Experimental interactions between clay minerals and bacteria: A Review. Pedosphere 25: 799-810. https://doi.org/10.1016/S1002-0160(15)30061-8
  14. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, et al. 2017. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67: 1613-1617. https://doi.org/10.1099/ijsem.0.001755
  15. Lopez-Fernandez M, Fernandez-Sanfrancisco O, Moreno-Garcia A, Martin-Sanchez I, Sanchez-Castro I, Merroun ML. 2014. Microbial communities in bentonite formations and their interactions with uranium. Appl. Geochem. 49: 77-86. https://doi.org/10.1016/j.apgeochem.2014.06.022
  16. Busse HJ. 2016. Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. Nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov. and Pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus. Int. J. Syst. Evol. Microbiol. 66: 9-37. https://doi.org/10.1099/ijsem.0.000702
  17. Liu Y, Du J, Lai Q, Zeng R, Ye D, Xu J, Shao Z. 2017. Proposal of nine novel species of the Bacillus cereus group. Int. J. Syst. Evol. Microbiol. 67: 2499-2508. https://doi.org/10.1099/ijsem.0.001821
  18. Martin PA, Travers RS. 1989. Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl. Environ. Microbiol. 55: 2437-2442. https://doi.org/10.1128/AEM.55.10.2437-2442.1989
  19. Eppard M, Krumbein WE, Koch C, Rhiel E, Staley JT, Stackebrandt E. 1996. Morphological, physiological, and molecular characterization of actinomycetes isolated from dry soil, rocks, and monument surfaces. Arch. Microbiol. 166: 12-22. https://doi.org/10.1007/s002030050350
  20. Seo DH, Cho ES, Hwang CY, Yoon DJ, Chun J, Jang Y, et al. 2019. Cultivable microbial diversity in domestic bentonites and their hydrolytic enzyme production. Microbiol. Biotechnol. Lett. 47: 125-131. https://doi.org/10.4014/mbl.1808.08011
  21. Li DF, Ding HC, Zhou T. 2013. Covalent immobilization of mixed proteases, trypsin and chymotrypsin, onto modified polyvinyl chloride microspheres. J. Agric. Food Chem. 61: 10447-10453. https://doi.org/10.1021/jf403476p
  22. Rasooli I, Astaneh SDA, Borna H, Barchini KA. 2008. A thermostable ${\alpha}$-amylase producing natural variant of Bacillus spp. isolated from soil in Iran. Am. J. Agric. Biol. Sci. 3: 591-596. https://doi.org/10.3844/ajabssp.2008.591.596
  23. Kalyani G, Rajesh EM. 2018. Production and purification of amylase from Bacillus subtilis isolated from soil. Int. J. Eng. Manag. Res. 8: 246-254.
  24. O AA, Fagade OE. 2006. Growth pattern and structural nature of amylases produced by some Bacillus species in starchy substrates. Afr. J. Biotechnol. 5: 440-444.
  25. Lee YJ, Kim BK, Lee BH, Jo KI, Lee NK, Chung CH, et al. 2008. Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresour. Technol. 99: 378-386. https://doi.org/10.1016/j.biortech.2006.12.013
  26. Behera BC, Mishra RR, Singh SK, Dutta SK, Thatoi H. 2016. Cellulase from Bacillus licheniformis and Brucella sp. isolated from mangrove soils of Mahanadi river delta, Odisha, India. Biocatal. Biotransformation 34: 44-53. https://doi.org/10.1080/10242422.2016.1212846
  27. Kashyap DR, Vohra PK, Chopra S, Tewari R. 2001. Applications of pectinases in the commercial sector: a review. Bioresour. Technol. 77: 215-227. https://doi.org/10.1016/S0960-8524(00)00118-8
  28. Ruiz C, Pastor FIJ, Diaz P. 2005. Isolation of lipid- and polysaccharide- degrading micro-organisms from subtropical forest soil, and analysis of lipolytic strain Bacillus sp. CR-179. Lett. Appl. Microbiol. 40: 218-227. https://doi.org/10.1111/j.1472-765X.2005.01660.x
  29. Ghosh A, Maity B, Chakrabarti K, Chattopadhyay D. 2007. Bacterial diversity of east Calcutta wet land area: possible identification of potential bacterial population for different biotechnological uses. Microb. Ecol. 54: 452-459. https://doi.org/10.1007/s00248-007-9244-z
  30. Bhunia B, Basak B, Dey A. 2012. A review on production of serine alkaline protease by Bacillus spp. J. Biochem. Technol. 3: 448-457.
  31. Saggu SK, Mishra PC. 2017. Characterization of thermostable alkaline proteases from Bacillus infantis SKS1 isolated from garden soil. PLoS One 12: e0188724. https://doi.org/10.1371/journal.pone.0188724
  32. Luang-In V, Yotchaisarn M, Saengha W, Udomwong P, Deeseenthum S, Maneewan K. 2019. Protease-producing bacteria from soil in nasinuan community forest, mahasarakham province, Thailand. Biomed. Pharmacol. J. 12: 587-595. https://doi.org/10.13005/bpj/1678
  33. de Veras BO, dos Santos YQ, Diniz KM, Carelli GSC, dos Santos EA. 2018. Screening of protease, cellulase, amylase and xylanase from the salt-tolerant and thermostable marine Bacillus subtilis strain SR60. F1000Res 7: 1704. https://doi.org/10.12688/f1000research.16542.1