DOI QR코드

DOI QR Code

Effects of fermented coffee on human gut microbiota

발효커피가 사람장내미생물에 미치는 영향

  • Ko, Gwangpyo (Faculty of Biotechnology, School of life sciences, SARI Jeju National University) ;
  • Kim, Jin-Kyeong (Microbial Institute for Fermentation Industry (MIFI)) ;
  • Jo, Seong-Wha (Microbial Institute for Fermentation Industry (MIFI)) ;
  • Jeong, Do-Youn (Microbial Institute for Fermentation Industry (MIFI)) ;
  • Unno, Tatsuya (Faculty of Biotechnology, School of life sciences, SARI Jeju National University)
  • Received : 2020.01.29
  • Accepted : 2020.02.28
  • Published : 2020.03.31

Abstract

Fermented foods have been recognized as functional foods that provide health benefits, including the modulation of intestinal microbiota. Therefore, the aim of the present study was to examine the effects of coffee beans fermented with Lactobacillus plantarum and Bacillus amyloliquefaciens on healthy human gut microbiota. Fermentation increased the content of beneficial substances (i.e., flavonoids and polyphenols). The consumption of fermented coffee increased the occurrence of beneficial microorganisms such as fiber degraders and short-chain fatty acid producers, although no significant microbiota shifts were observed after the coffee consumption. The analysis of metabolic activities also showed no difference after the coffee consumption. Our study demonstrates that the consumption of the fermented coffee may increase some beneficial bacterial while remaining the gut microbiota and its activities.

발효식품은 장 건강을 포함하여 건강상의 이로운점을 제공하는 건강기능식품으로 인식되고 있다. 따라서 본 연구는 Lactobacillus plantarum과 Bacillus amyloliquefaciens로 발효 된 커피원두가 건강한 사람의 장내미생물 생태에 미치는 영향을 조사하였다. 커피원두를 발효하여 플라보노이드와 폴리페놀과 같은 이로운 물질이 증가하였다. 또한 발효커피의 섭취로 인해 유의한 장내 미생물생태 및 물질대사 변화가 관찰되지 않았지만, 섬유소 분해 및 단쇄지방산을 생성하는 유익한 미생물이 증가하였다. 본 연구 결과는 발효커피 섭취로인해 장내미생물생태 및 물질대사를 유지하면서 유익한 미생물이 증가하였음을 확인하였다.

Keywords

References

  1. Park K-Y (2012) Increased health functionality of fermented foods. J Korean Soc Food Sci Nutr 17.1 (2012): 1-8
  2. Kim J-H, Lee W-J, Cho Y-W, Kim K-Y (2009) Storage-life and palatability extension of Betula platyphylla sap using lactic acid bacteria fermentation. J Korean Soc Food Sci Nutr 38: 787-794 https://doi.org/10.3746/JKFN.2009.38.6.787
  3. Hong SW, Lim IK, Kim YW, Shin S-M, Chung KS (2013) Denaturing gradient gel electrophoresis and culture-based analysis of the bacterial community in Cheonggukjang, a Korean traditional fermented soybean food from Gangwon province. Korean J Food Sci Technol 45: 515-520 https://doi.org/10.9721/KJFST.2013.45.4.515
  4. Matsumura H, Takeuchi A, Kano Y (1997) Construction of Escherichia coli$^{\circ}(C)$Bifidobacterium longum shuttle vector transforming B. longum 105-A and 108-A. Biosci Biotech Bioch 61: 1211-1212 https://doi.org/10.1271/bbb.61.1211
  5. Chen M, Sun Q, Giovannucci E, Mozaffarian D, Manson JE, Willett WC, Hu FB (2014) Dairy consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. BMC Med 12: 215 https://doi.org/10.1186/s12916-014-0215-1
  6. Tapsell LC (2015) Fermented dairy food and CVD risk. Brit J Nutr 113: S131-S135 https://doi.org/10.1017/s0007114514002359
  7. Soedamah-Muthu SS, Masset G, Verberne L, Geleijnse JM, Brunner EJ (2013) Consumption of dairy products and associations with incident diabetes, CHD and mortality in the Whitehall II study. Brit J Nutr 109: 718-726 https://doi.org/10.1017/S0007114512001845
  8. Chilton S, Burton J, Reid G (2015) Inclusion of fermented foods in food guides around the world. Nutrients 7: 390-404 https://doi.org/10.3390/nu7010390
  9. Borrelli RC, Visconti A, Mennella C, Anese M, Fogliano V (2002) Chemical characterization and antioxidant properties of coffee melanoidins. J Agr Food Chem 50: 6527-6533 https://doi.org/10.1021/jf025686o
  10. Snchez-Gonzlez I, Jimnez-Escrig A, Saura-Calixto F (2005) In vitro antioxidant activity of coffees brewed using different procedures (Italian, espresso and filter). Food Chem 90: 133-139 https://doi.org/10.1016/j.foodchem.2004.03.037
  11. Silva CF, Batista LR, Abreu LM, Dias ES, Schwan RF (2008) Succession of bacterial and fungal communities during natural coffee (Coffea arabica) fermentation. Food Microbiol 25: 951-957 https://doi.org/10.1016/j.fm.2008.07.003
  12. Kwak HS, Jeong Y, Kim M (2018) Effect of yeast fermentation of green coffee beans on antioxidant activity and consumer acceptability. J Food Quality Volume 2018, Article ID 5967130, 8
  13. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79: 5112-5120 https://doi.org/10.1128/AEM.01043-13
  14. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75: 7537-7541 https://doi.org/10.1128/AEM.01541-09
  15. Westcott SL, Schloss PD (2017) OptiClust, an Improved Method for Assigning Amplicon-Based Sequence Data to Operational Taxonomic Units. mSphere 2: e00073-00017
  16. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12: R60 https://doi.org/10.1186/gb-2011-12-6-r60
  17. Holmes I, Harris K, Quince C (2012) Dirichlet multinomial mixtures: generative models for microbial metagenomics. PloS one 7: e30126 https://doi.org/10.1371/journal.pone.0030126
  18. Douglas GM, Maffei VJ, Zaneveld J, Yurgel SN, Brown JR, Taylor CM, Huttenhower C, Langille MGI (2019) PICRUSt2: An improved and extensible approach for metagenome inference. bioRxiv: 672295
  19. White JR, Nagarajan N, Pop M (2009) Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLOS Comput Biol 5: e1000352 https://doi.org/10.1371/journal.pcbi.1000352
  20. Klinder A, Shen Q, Heppel S, Lovegrove JA, Rowland I, Tuohy KM (2016) Impact of increasing fruit and vegetables and flavonoid intake on the human gut microbiota. Food Funct 7: 1788-1796 https://doi.org/10.1039/c5fo01096a
  21. Jiao X, Wang Y, Lin Y, Lang Y, Li E, Zhang X, Zhang Q, Feng Y, Meng X, Li B (2019) Blueberry polyphenols extract as a potential prebiotic with anti-obesity effects on C57BL/6 J mice by modulating the gut microbiota. J Nutr Biochem 64: 88-100 https://doi.org/10.1016/j.jnutbio.2018.07.008
  22. Hjorth MF, Blaedel T, Bendtsen LQ, Lorenzen JK, Holm JB, Kiilerich P, Roager HM, Kristiansen K, Larsen LH, Astrup A (2019) Prevotella-to-Bacteroides ratio predicts body weight and fat loss success on 24-week diets varying in macronutrient composition and dietary fiber: results from a post-hoc analysis. Int J Obesity (Lond) 43: 149-157 https://doi.org/10.1038/s41366-018-0093-2
  23. Vital M, Karch A, Pieper DH (2017) Colonic Butyrate-Producing Communities in Humans: an Overview Using Omics Data. mSystems 2
  24. Louis S, Tappu RM, Damms-Machado A, Huson DH, Bischoff SC (2016) Characterization of the Gut Microbial Community of Obese Patients Following a Weight-Loss Intervention Using Whole Metagenome Shotgun Sequencing. PLoS One 11: e0149564 https://doi.org/10.1371/journal.pone.0149564
  25. Del Chierico F, Abbatini F, Russo A, Quagliariello A, Reddel S, Capoccia D, Caccamo R, Ginanni Corradini S, Nobili V, De Peppo F, Dallapiccola B, Leonetti F, Silecchia G, Putignani L (2018) Gut Microbiota Markers in Obese Adolescent and Adult Patients: Age- Dependent Differential Patterns. Front Microbiol 9: 1210 https://doi.org/10.3389/fmicb.2018.01210
  26. Huhn R, Stoermer H, Klingele B, Bausch E, Fois A, Farnetani M, Di Rocco M, Boue J, Kirk JM, Coleman R, Scherer G (1998) Novel and recurrent tyrosine aminotransferase gene mutations in tyrosinemia type II. Hum Genet 102: 305-313 https://doi.org/10.1007/s004390050696