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MORE ON REVERSE OF HÖLDER’S INTEGRAL

INEQUALITY

Bouharket Benaissa and Hüseyin Budak∗

Abstract. In 2012, Sulaiman [7] proved integral inequalities con-
cerning reverse of Holder’s. In this paper two results are given. First
one is further improvement of the reverse Hölder inequality. We note
that many existing inequalities related to the Hölder inequality can
be proved via obtained this inequality in here. The second is further
generalization of Sulaiman’s integral inequalities concerning reverses
of Holder’s [7].

1. Introduction

Hölder’s inequality is one of the most important inequalities of pure
and applied mathematics. It was the key for resolving many problems
in social science natural science. Hölder’s inequality reads :

Theorem 1.1. Let f, g be non-negative integrable functions, let p >
1, 1

p
+ 1

q
= 1. Then

(1)

∫ b

a

f(x)g(x)dx ≤
(∫ b

a

fp(x)dx

) 1
p
(∫ b

a

f q(x)dx

) 1
q

.

The reverse Hölder’s inequality have been explored by a number of
scientists, the famous ones are:
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Lemma 1.2. Let p > 1, 1
p
+ 1

q
= 1, if

0 < m ≤ f(x)

g(x)
≤M,

then

(2)

(∫ b

a

f(x)dx

) 1
p
(∫ b

a

g(x)dx

) 1
q

≤
(
M

m

) 1
pq
∫ b

a

f
1
p (x)g

1
q (x)dx.

See ( [3], [4] p.126, [6] p.3).

Lemma 1.3. Let p > 1, 1
p
+ 1

q
= 1, if

0 < m ≤ fp(x)

gq(x)
≤M,

then

(3)

(∫ b

a

fp(x)dx

) 1
p
(∫ b

a

gq(x)dx

) 1
q

≤
(
M

m

) 1
pq
∫ b

a

f(x)g(x)dx.

See ( [1] p.212, [2] p.9, [5] p.206).
Sulaiman proved the following important inequality:

Theorem 1.4. [7] Let p > 0, q > 0 and f, g be positive functions
satisfying

0 < m ≤ f(x)

g(x)
≤M for all x ∈ [a, b],

then (∫ b

a

fp(x)dx

) 1
p
(∫ b

a

gq(x)dx

) 1
q

(4)

≤ M

m

(∫ b

a

(f(x)g(x))
p
2 dx

) 1
p
(∫ b

a

(f(x)g(x))
q
2 dx

) 1
q

.

In this paper, by using a simple proof method, we will generalize the
inequalities above.
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2. Main Results

In this section we give our results Theorems 2.1 and 2.6. Let −∞ <
a < b < +∞ and α, β ∈ R.

Theorem 2.1. Let α, β > 0, p > 1, 1
p
+ 1
q
= 1 and f, g > 0 integrable

functions on [a, b], w a weight function ( measurable and positive ) on
[a, b]. If

(5) 0 < m ≤ fα(x)

gβ(x)
≤M for all x ∈ [a, b],

then
(6)(∫ b

a

fα(x)w(x)dx

) 1
p
(∫ b

a

gβ(x)w(x)dx

) 1
q

≤
(
M

m

) 1
pq
∫ b

a

f
α
p (x)g

β
q (x)w(x)dx.

Proof. From the assumption (5), we get

m−
1
q ≥ f−

α
q g

β
q ≥M− 1

q

i.e. (
1

m

) 1
q

fα ≥ f
α
p g

β
q ≥

(
1

M

) 1
q

fα

then

(7) m
1
q f

α
p g

β
q ≤ fα ≤M

1
q f

α
p g

β
q .

Multiplying right hand side of (7) by w(x) and integrating on [a, b], we
have

(8)

(∫ b

a

fα(x)w(x)dx

) 1
p

≤M
1
pq

(∫ b

a

f
α
p (x)g

β
q (x)w(x)dx

) 1
p

.

Similarly, from the assumption (5) we have

m
1
p ≤ f

α
p g−

β
p ≤M

1
p

i.e.

m
1
p gβ ≤ f

α
p g

β
q ≤M

1
p gβ

then (
1

M

) 1
p

f
α
p g

β
q ≤ gβ ≤

(
1

m

) 1
p

f
α
p g

β
q .
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Finally, we deduce that

(9)

(∫ b

a

gβ(x)w(x)dx

) 1
q

≤ (
1

m
)

1
pq

(∫ b

a

f
α
p (x)g

β
q (x)w(x)dx

) 1
q

.

By multiplying the inequalities (8) and (9), we have the required in-
equality (6).

Remark 2.2. If we choose α = 1, β = 1 and w(x) = 1 in Theorem
2.1, then Theorem 2.1 reduces to Lemma 1.2.

Remark 2.3. If we take α = p, β = q and w(x) = 1 in Theorem 2.1,
then Theorem 2.1 reduces to Lemma 1.3.

If we have

m ≤ fp(x)

gq(x)
≤M,

then

m
1
q ≤ f

p
q (x)

g(x)
≤M

1
q ,

m
1
q ≤ fp−1(x)

g(x)
≤M

1
q

we deduce that

Corollary 2.4. Let p > 1, 1
p
+ 1

q
= 1 and f, g non-negative inte-

grable functions on [a, b] satisfying

0 < m ≤ fp−1(x)

g(x)
≤M,

then

(10)

(∫ b

a

fp(x)dx

) 1
p
(∫ b

a

gq(x)dx

) 1
q

≤
(
M

m

) 1
p
∫ b

a

f(x)g(x)dx.

If we have

m ≤ fp(x)

gq(x)
≤M,

then

m
1
p ≤ f(x)

gq−1(x)
≤M

1
p

we deduce that
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Corollary 2.5. Let p > 1, 1
p
+ 1

q
= 1 and f, g non-negative inte-

grable functions on [a, b] satisfying

0 < m ≤ f(x)

gq−1(x)
≤M,

then

(11)

(∫ b

a

fp(x)dx

) 1
p
(∫ b

a

gq(x)dx

) 1
q

≤
(
M

m

) 1
q
∫ b

a

f(x)g(x)dx.

Theorem 2.6. Let α, c, p, q, p′, q′ > 0 and let f, g be two non-
negative measurable functions on [a, b]. If

(12) 0 < c < m ≤ αf(x)

g(x)
≤M for all x ∈ [a, b],

then (∫ b

a

fp(x)dx

) 1
p
(∫ b

a

gq(x)dx

) 1
q

≤ M

α

( α
m

) 2p′
p′+q′

(m+ c)
p′−q′
p′+q′ (M + c)

q′−p′
p′+q′(13)

×
(∫ b

a

(
fp
′
(x)gq

′
(x)
) p
p′+q′

dx

) 1
p
(∫ b

a

(
fp
′
(x)gq

′
(x)
) q
p′+q′

dx

) 1
q

.

Proof. By the assumption (12) we have

(14) m+ c ≤ αf(x) + c g(x)

g(x)
≤M + c

and

(15)
M + c

M
≤ αf(x) + c g(x)

αf(x)
≤ m+ c

m
.

Integrating the left inequalities of (14) and (15), we get

(m+ c)

(∫ b

a

gq(x)dx

) 1
q

≤
(∫ b

a

(αf(x) + c g(x))qdx

) 1
q

and

α

(
M + c

M

)(∫ b

a

fp(x)dx

) 1
p

≤
(∫ b

a

(αf(x) + c g(x))pdx

) 1
p

.
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Multiplying these inequalities we obtain

α

M
(M + c)(m+ c)

(∫ b

a

fp(x)dx

) 1
p
(∫ b

a

gq(x)dx

) 1
q

(16)

≤
(∫ b

a

(αf(x) + c g(x))pdx

) 1
p
(∫ b

a

(αf(x) + c g(x))qdx

) 1
q

.

From the right inequalities of (14) and (15), we get

(αf(x) + c g(x))q
′ ≤ (M + c)q

′
gq
′
(x)

and

(αf(x) + c g(x))p
′ ≤

( α
m
(m+ c)

)p′
fp
′
(x),

then

(αf(x) + c g(x))p
′+q′ ≤

( α
m
(m+ c)

)p′
(M + c)q

′
fp
′
(x)gq

′
(x).

Thus, we get
(17)

(αf(x) + c g(x)) ≤
( α
m
(m+ c)

) p′
p′+q′

(M + c)
q′

p′+q′
(
fp
′
(x)gq

′
(x)
) 1
p′+q′

.

From the inequality (17), we deduce that(∫ b

a

(αf(x) + c g(x))pdx

) 1
p
(∫ b

a

(αf(x) + c g(x))qdx

) 1
q

≤
( α
m
(m+ c)

) 2p′
p′+q′

(M + c)
2q′
p′+q′(18)

×
(∫ b

a

(
fp
′
(x)gq

′
(x)
) p
p′+q′

) 1
p
(∫ b

a

(
fp
′
(x)gq

′
(x)
) q
p′+q′

) 1
q

.

Finally, by the inequalities(16) and (18), we obtain desired inequality
(13).

Remark 2.7. If we choose p′ = q′ = α = 1 in Theorem 2.6, then we
get Theorem 1.4.
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Düzce University
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