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ON KU-ALGEBRAS CONTAINING (α, β)-US SOFT SETS

Moin A. Ansari∗, Ali N. A. Koam, and Azeem Haider

Abstract. In this paper, we connect (α, β) union soft sets and
their ideal related properties with KU -algebras. In particular, we
will study (α, β)-union soft sets, (α, β)-union soft ideals, (α, β)-union
soft commutative ideals and ideal relations in KU -algebras. Finally,
a characterization of ideals in KU -algebras in terms of (α, β)-union
soft sets have been provided.

1. Introduction

The soft set theory along with rough set theory are strong tools to
work with uncertainty, vagueness and decision making problems. These
two concepts are widely studied in classical as well as logical algebraic
structures. Soft and rough set theory play an important role in fuzzy
and neutrosophic algebraic structures.
Soft set theory was introduced by Molodtsov in [10]. Then after many
researchers shown their interest in the direction of soft set theory asso-
ciated to different algebraic structures. Maji et al. [9] have connected
soft set theory in decision making problems. Aktas et al. [1] have de-
fined soft groups with soft sets. Later on many researchers brought
this concept with logical algebras. Jun et al. [5] studied ideal theory in
BCK/BCI-algebras based on soft sets and N -structures. Gulistan and
Shahzad [3] defined soft KU -algebras. Gulistan et al. [4] defined (α, β)
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fuzzy KU ideals of KU -algebras. Xi et al. [17] defined a new type of
soft ideal of KU -algebras whereas Xi et al. [18] defined a new type soft
prime ideal of KU -algebras. Jana and Pal [6] studied (α, β)-US sets
in BCK/BCI-algebras. Prabpayak and Leerawat [13] introduced KU -
algebras and their ideals [14]. Recently Ali et al. defined and studied
Pseudo-metric and n-ary block codes on KU -algebras in [7] and [8] re-
spectively. Senapati and Shum [16], have studied Atanassov’s intuition-
istic fuzzy bi-normed KU -ideals of a KU -algebra. Roohallah et al. [15]
showed a representation for radicals in pseudo BL-algebras. Zhang [19]
et al. connected soft set theoretical approach to pseudo-BCI algebras.

2. KU-Algebras and Soft Sets

In this section, we consider those definitions and examples that are
used throughout this paper. For more information regardingKU -algebras
and their ideals reader can go through [13] and [14].

Definition 1. [13] By a KU -algebra we mean an algebra (K, ◦, 1)
of type (2, 0) with a single binary operation ◦ that satisfies the following
identities: for any x, y, z ∈ K,

(ku1) (x ◦ y) ◦ [(y ◦ z) ◦ (x ◦ z)] = 1,
(ku2) x ◦ 1 = 1,
(ku3) 1 ◦ x = x,
(ku4) x ◦ y = y ◦ x = 1 implies x = y.

In what follows, let (K, ◦, 1) denote a KU -algebra unless otherwise
specified. For brevity we also call K a KU -algebra. The element 1 of K
is called constant which is the fixed element of K. Partial order ” ≤ ” in
K is denoted by the condition x ≤ y if and only if y ◦ x = 1.

Lemma 1. [13] (K, ◦, 1) is a KU -algebra if and only if it satisfies:
(ku5) x ◦ y ≤ (y ◦ z) ◦ (x ◦ z),
(ku6) x ≤ 1,
(ku7) x ≤ y, y ≤ x implies x = y,

Lemma 2. In a KU -algebra, the following identities are true [11]:
(ku8) z ◦ z = 1,
(ku9) z ◦ (x ◦ z) = 1,
(ku10) x ≤ y imply y ◦ z ≤ x ◦ z,
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(ku11) z ◦ (y ◦ x) = y ◦ (z ◦ x), for all x, y, z ∈ K,
(ku12) y ◦ [(y ◦ x) ◦ x] = 1.

Example 1. [11] Let K = {1, 2, 3, 4, 5} in which ◦ is defined by the
following table

◦ 1 2 3 4 5

1 1 2 3 4 5
2 1 1 3 4 5
3 1 2 1 4 4
4 1 1 3 1 3
5 1 1 1 1 1

It is easy to see that K is a KU -algebra.

Definition 2. A non-empty subset Y of a KU -algebra K is called
subalgebra of K if x ◦ y ∈ Y for all x, y ∈ Y.
A KU -algebra K is said to be commutative if (x ◦ y) ◦ y = (y ◦x) ◦x for
all x, y ∈ K. A subset I of a KU -algebra K is called an ideal of K if:

(ku13) 1 ∈ I,
(ku14) x ∈ I and x ◦ y ∈ I ⇒ y ∈ I for all x, y ∈ K.

A subset I of a KU -algebra K is called a commutative ideal if it
satisfies (ku13) and for z ∈ I we have,
(ku15) z ◦ (y ◦ x) ∈ I ⇒ ((x ◦ y) ◦ y) ◦ x ∈ I.

An ideal I of a KU -algebra K is called commutative if y ◦ x ∈ I ⇒
((x ◦ y) ◦ y) ◦x ∈ I. By X we mean initial universal set, and E is the set
of parameters. P(X ) stands for power set of X .

Definition 3. [10] A pair (K, E) is called a soft set over X , where
K is a function given by: K : E → P(X ). We say that, a soft set in
the universe X is a parameterized family of subsets of the universal set
X . For ε ∈ A,K(ε) is the set of ε-elements of the soft (K, A) or can be
considered to be set of ε-approximate elements of the soft set.

Here is an example for soft set in a topological spaces.

Example 2. Let (K, τ) be a topological space, i.e., τ is a family of
subsets of the set K called the open sets of K. Then, the family of open
neighborhoods N(x) of point x, where N(x) = {V ∈ τ |x ∈ V }, may be
considered as the soft set (N(x), τ) .

Definition 4. [10] Let A be a non-empty subset of E. Then a soft
set (K, E) over X satisfying the condition: K(x) = ∅ for all x 6∈ A
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is called the A-soft set over X and is denoted by KA, so an A-soft set
KA over X is a function KA : E → P such that KA(x) = ∅ for all
x 6∈ A. A soft set over U can be followed by the set of ordered pairs:
KA = {(x,KA(x)) : x ∈ E,KA(x) ∈ P(X )}.

Note that a soft set is a parameterized family of subsets of the set X .
A soft set KA(x) may be an arbitrary, empty, and nonempty intersection.
The set of all soft sets over X is denoted by S(X ).

Definition 5. [12] Let KA ∈ S(X ). For all x ∈ E, if KA(x) = ∅, then
KA is said to be an empty soft set and symbolized by ΦA. If KA(x) = X ,
then KA is said to be an A-universal soft set and symbolized as KA. If
KA(x) = X and A = E, then KA is said to be a universal soft set and is
denoted by KE .

Proposition 1. [12] Let KA ∈ S(X ). Then,
(i) KA∪KA = KA, KA∩KA = KA.
(ii) KA∪ΦA = KA, KA∩ΦA = ΦA.
(iii) KA∪KE = KE , KA∩KE = KA.
(iv) KA∪KcA = KE ,KcÃ∪K

c
A = ΦA, where ΦA is an empty set.

Definition 6. Let E be a KU -algebra and (K, A) be a soft set over
KU -algebra E . Then, (K, A) is called a soft KU -algebra over E if K(x)
is a subalgebra of E for all x ∈ E.

Definition 7. Let E be a KU -algebra. Let KA ∈ S(X ) for a given
subalgebra A of E. Then, KA is called a US algebra of A over X if, for all
x, y ∈ A, it satisfies the following condition: KA(x◦y) ⊆ KA(x)∪KA(y).

Definition 8. Let E be a KU -algebra and A be a subalgebra of E .
Let KA ∈ S(X ). Then, KA is called a US ideal over X if, for all x, y ∈ A,
it satisfies the following condition:

(1) KA(1) ⊆ KA(x)
(2) KA(y) ⊆ KA(x ◦ y) ∪ KA(x) .

Definition 9. Let E be a KU -algebra. For a given subalgebras A
of E, let KA ∈ S(X ). Then, KA is called a commutative ideal over X if,
for all x, y, z ∈ A, it satisfies the following conditions:

(1) KA(1) ⊆ KA(x)
(2) KA(((x ◦ y) ◦ y) ◦ x) ⊆ KA(z ◦ (y ◦ x)) ∪ KA(z).

Definition 10. Let KA ∈ S(X ) and δ ⊆ X . Then, the δ-exclusion
set of KA, denoted by KδA, is defined by KδA(x) = {x ∈ A|KA(x) ⊆ δ}.
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3. (α, β)-US Sets

In this section, we shall use to write X for initial universe, E for set of
parameters, and � for a binary operation. Let S(X ) be the set of all soft
sets. We define (α, β)-US sets and illustrate them by some examples.
We consider ∅ ⊆ α ⊂ β ⊆ X .

Definition 11. For any non-empty subset A of E, consider the soft
set KA ∈ S(X ). Then, for all x, y ∈ A, the soft set KA is called an
(α, β)-US set over X if it satisfies the following condition: KA(x�y)∩β ⊆
KA(x) ∪ KA(y) ∪ α.

Example 3. Consider universe set X = {b1, b2, b3, b4, b5}. Let the set
of parameters be E = {τ1, τ2, τ3, τ4} with the following table:

� τ1 τ2 τ3 τ4
τ1 τ1 τ2 τ3 τ4
τ2 τ1 τ1 τ3 τ4
τ3 τ1 τ1 τ1 τ4
τ4 τ1 τ2 τ3 τ1

We consider a soft set KE over X , which is given as KE(τ1) = {b3, b5},
KE(τ2) = {b3, b4, b5},KE(τ3) = {b2, b3, b4, b5}, and KE(τ4) = {b1, b3, b5}.
Fix β = {b1, b2, b3, b5} and α = {b2, b3}. It can be seen that KE is an
(α, β)-US set over X .

Theorem 1. Let KA,KB ∈ S(X ) be soft sets such that KA is a soft
subset of KB. If KB is an (α, β)-US set over X , then the same holds for
KA.

Proof. Let x, y ∈ A such that x � y ∈ A. Then, x � y ∈ B since
A ⊆ B. Thus, KA(x � y) ∩ β ⊆ KB(x � y) ∩ β ⊆ KB(x) ∪ KB(y) ∪ α =
KA(x) ∪ KA(y) ∪ α. Therefore, KA is an (α, β)-US set over X .

The following example shows that the converse of Theorem 1 is not
true in general.
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Example 4. For the universe set X = {b1, b2, b3, b4, b5}, we consider
the set of parameters E = {τ1, τ2, τ3, τ4} with the following table:

� τ1 τ2 τ3 τ4
τ1 τ1 τ2 τ3 τ4
τ2 τ2 τ1 τ4 τ3
τ3 τ3 τ3 τ1 τ2
τ4 τ4 τ2 τ2 τ1

For A = {τ1, τ2} ⊂ E. Let KE be a soft set over X as KA(τ1) =
{b1, b3},KA(τ2) = {b1, b3, b4},KA(τ3) = ∅,KA(τ4) = ∅, β = {b1, b3, b4, b5},
and α = {b3, b4}. Then, it can be easily verified that KA is an (α, β)-US
set over X .
Consider another soft set KB as KB(τ1) = {b1, b3}, KB(τ2) = {b1, b3, b4},
KB(τ3) = {b2, b4}, and KB(τ4) = {b4, b5}. Then, KA is a soft subset
of KB. However, for β = {b1, b3, b4, b5} and α = {b3, b4},KB is not an
(α, β)-union soft set over X , because KB(τ3 � τ4) ∩ β = {b1, b3, b4} 6≤
{b2, b3, b4, b5} = KB(τ3) ∪ KB(τ4) ∪ α.

4. (α, β)-US Subalgebras in KU-Algebras

In this section, we introduce the concept of the (α, β)-US subalgebra
of KU -algebras and investigate some of its characterization. We shall
consider E as a KU -algebras throughout this section.

Definition 12. Let E be a KU -algebra. Let KA ∈ S(X ) for a
given subalgebra A of E. Then, KA is called an (α, β)-US algebra of A
over U if, for all x, y ∈ A, it satisfies the condition: KA(y ◦ x) ∩ β ⊆
KA(x) ∪ KA(y) ∪ α.

We consider the pre-order relation⊆(α,β) on S(X ) as: for anyKE,LE ∈
S(X ) and ∅ ⊆ α ⊂ β ⊆ X , we define KE ∩ β ⊆ LE ∪ α ⇔ KE(x) ∩ β ⊆
LE(x)∪α for any x ∈ E. We define a relation =(α,β) such as⇔ KE∩β ⊆
LE ∪ α and LE ∩ β ⊆ KE ∪ α. Using the above notion, the (α, β)-US
subalgebras in KU -algebra is defined as follows:

Definition 13. Let E be a KU -algebra. Let KA ∈ S(X ) for a
given subalgebra A of E. Then, KA is called an (α, β)-US algebra of A
over X if, for all x, y ∈ A, it satisfies the condition: KA(y ◦ x) ∩ β ⊆
KA(x) ∪ KA(y) ∪ α.
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Example 5. Let K = {1, a, b, c, d} be a KU -algebra with the follow-
ing Cayley table:

◦ 1 a b c d

1 1 a b c d
a 1 1 b c c
b 1 1 1 c c
c 1 1 1 1 a
d 1 1 1 a 1

Let (KA, A) be a soft set over X = K, where E = A = K and KA :
A −→ S(X ) is a set-valued function defined by KA(x) = {y ∈ X|y ◦x =
1} for all x ∈ A. Then, KA(1) = {1},KA(a) = {1, a},KA(b) = {1, a, b},
KA(c) = {1, a, b, c}, and KA(d) = {1, a, b, c, d}. It can be easily veri-

fied that KA is an (α, β)-US algebra of A over X , where β = {1, a, c, d}
and α = {1, a, d}.

Theorem 2. Let E be a KU -algebra, KA ∈ S(X ) be a given subal-
gebra A of E, and β ⊆ X . For δ ∈ X , KA is an (α, β)-US subalgebra
of A over X if and only if each non-empty subset B(KA : δ), which is
defined by B(KA : δ) = {x ∈ A|KA(x) ⊆ δ ∪ α} where δ ⊆ β, is a
subalgebra of A.

Proof. Let KA be an (α, β)-US algebra of A over X such that KA(x) ⊆
β for every x ∈ A, and let x, y ∈ B(KA : δ). Then, KA(y ◦ x) ∩ β ⊆
KA(x) ∪ KA(y) ∪ α ⊆ δ ∪ α, which implies that y ◦ x ∈ B(KA : δ).

Hence, B(KA : δ) is a subalgebra of A.
Conversely, let each non-empty subset B(KA : δ) be a subalgebra of

A. Then, according to our assumption on KA, for x, y ∈ A, there are
δ1, δ2 ⊆ β such that KA(x) = δ1 and KA(y) = δ2. Thus,
KA(x) ⊆ δ and KA(y) ⊆ δ for δ = δ1 ∪ δ2 ⊆ β. Hence, x, y ∈ B(KA :

δ). Since B(KA : δ) is a subalgebra of A, so y ◦ x ∈ B(KA : δ). Thus,
KA(y ◦ x) ∩ β ⊆ δ and KA(x) ∪ KA(y) ∪ α = δ1 ∪ δ2 ∪ α = δ ∪ α, which
implies KA(y ◦ x) ∩ β ⊆ KA(x) ∪ KA(y) ∪ α. Hence, the proof of the
Theorem 2 is completed.

Theorem 3. Let E be a KU -algebra and KA ∈ S(X ) be such that
A ⊆ E. Then, KA is an (α, β)-US algebra of A over X if, for all x ∈ A,
it satisfies the condition: KA(1) ∩ β ⊆ KA(x) ∪ α.

Proof. If 1 6∈ A, then KA(1)∩ β = ∅∩ β ⊆ KA(x)∪α for all x ∈ A. If
1 ∈ A, then KA(1)∩β = KA(x◦x)∩β ⊆ KA(x)∪KA(x)∪α = KA(x)∪α
for all x ∈ A. Therefore, KA(1) ∩ β ⊆ KA(x) ∪ α holds.
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Theorem 4. If a soft KA over X is an (α, β)-US algebra of A, then:
(KA(1) ∩ β) ∪ α ⊆ (KA(x) ∩ β) ∪ α, for all x ∈ A.

Proof. Let KA ∈ S(X ), and by using Theorem 3, we get: (KA(1) ∩
β) ∪ α = (KA(x ◦ x) ∩ β) ∪ α ⊆ ((KA(x) ∪ KA(x) ∪ α) ∩ β) ∪ α =
((KA(x)∩β)∪α)∪((KA(x)∩β)∪α) ⊆ (KA(x)∩β)∪α. Which completes
the proof.

Proposition 2. Let E be a KU -algebra and KA ∈ S(X ) for a given
subalgebra A of E. Then, KA is a (α, β)-US algebra of A over X if for
all x ∈ A, it satisfies the condition: KA(y ◦ x) ∩ β ⊆ KA(y) ∪ α ⇔
KA(x) ∩ β = KA(y) ∪ α.

Proof. We assume that KA(y ◦ x) ∩ β ⊆ KA(y) ∪ α for all x, y ∈ A.
Take y = 1, and use (ku6), which induces KA(x) ∩ β = KA(1 ◦ x) ∩ β ⊆
KA(1) ∪ α. It follows from Theorem 3 that KA(x) ∩ β = KA(1) ∪ α for
all x ∈ A.

Conversely, suppose that KA(x)∩β = KA(1)∪α for all x ∈ A. Then,
KA(y ◦ x) ∩ β ⊆ KA(x) ∪ KA(y) ∪ α
= KA(1) ∪ KA(y) ∪ α = KA(y) ∪ α for all x, y ∈ A.

For a soft set (KA, A) over E, we consider the set: X1 = {x ∈
A|KA(x) = KA(1)}.

Theorem 5. Let E be a KU -algebra and A a subalgebra of E. Let
(KA, A) be an (α, β)-US algebra over E. Then, the set K◦1 = {x ∈
A|(KA(x) ∩ β) ∪ α = (KA(1) ∩ β) ∪ α} is a subalgebra of E.

Proof. If KA is an (α, β)-US algebra of A over X , then x, y ∈ X◦1 ; we
have (KA(x)∩ β)∪ α = (KA(1)∩ β)∪ α = (KA(y)∩ β)∪ α. Then, from
Theorem 3, we have (KA(1)∩β)∪α ⊆ (KA(y◦x)∩β)∪α for all x, y ∈ A.
This also takes the following form, (KA(y◦x)∩β)∪α ⊆ ((KA(x)∪KA(y)∪
α) ∩ β) ∪ α = ((KA(x) ∩ β) ∪ α) ∪ (KA(y) ∩ β) ∪ α) ⊆ (KA(1) ∩ β) ∪ α.
Hence, (KA(y ◦ x)∩ β)∪α = (KA(1)∩ β)∪α, and so, y ◦ x ∈ X◦1 . Thus,
K◦1 is a subalgebra of A.

Theorem 6. Let E be a KU -algebra and KA ∈ S(X ). Define a
soft set K◦A over X by K◦A : E → P(X ), where K◦A(x) = KA(x) if
x ∈ B(KA : δ) and K◦A(x) = X if x 6∈ B(KA : δ). Further if KA is an
(α, β)-US algebra over X , then so is K◦A.

Proof. If KA is an (α, β)-US algebra over X , then B(KA : δ) is a
subalgebra of A by Theorem 2. Let x, y ∈ A. If x, y ∈ B(KA : δ) , then
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y ◦ x ∈ B(KA : δ), and so, K◦A(y ◦ x) ∩ β = KA(y ◦ x) ∩ β ⊆ KA(x) ∪
KA(y) ∪ α = K◦A(x) ∪ K◦A(y) ∪ α. If x 6∈ B(KA : δ) or y 6∈ B(KA : δ),
then K◦A(x) = X or K◦A(y) = X . Thus, we have: K◦A(y ◦ x) ∩ β ⊆ X =
K◦A(x) ∪ K◦A(y) ∪ α. Therefore, K◦A is an (α, β)-US algebra of A over
X .

5. (α, β)-US Ideals and KU-Algebras

In this section, we define the (α, β)-US ideal and characterize their
properties.

Definition 14. Let A be subalgebra of a KU -algebra E. Let KA ∈
S(X ), then KA is called an (α, β)-US ideal over U if, for all x, y ∈ A,
it satisfies Theorem 3 and the following condition: KA(x) ∩ β ⊆ KA(y ◦
x) ∪ KA(y) ∪ α.

Example 6. Let X = Z be the universal set and K = {1, w, x, y, z}
be a KU -algebra with the following Cayley table:

◦ 1 w x y z

1 1 w x y z
w 1 1 x y z
x 1 w 1 y x
y 1 1 1 1 x
z 1 w 1 y 1

For a subalgebra A = {1, x, y, z} of E, define the soft set (KA, A) over
X as
KA(1) = {1, 3, 4, 5, 7, 9, 11, 12},
KA(x) = {1, 2, 4, 5, 6, 7, 8, 11, 13},
KA(y) = {2, 3, 5, 6, 8, 9, 13} and
KA(z) = {1, 2, 3, 5, 8, 11, 13}.
Then, KA is an (α, β)-US ideal of A over X , where
α = {1, 3, 6, 7, 9, 11, 11, 12} and
β = {1, 2, 3, 6, 7, 8, 9, 11, 11, 12, 13}.

Lemma 3. LetA be subalgebra of aKU -algebra E. LetKA ∈ S(X ), if
KA is a US ideal over X , then for all x, y ∈ A: x ≤ y ⇒ KA(x) ⊆ KA(y).

Proof. Let x, y ∈ A be such that x ≤ y. Then, y ◦ x = 1, from which,
by Definition 15 and Theorem 3, we get KA(x) ⊆ KA(y ◦ x) ∪ KA(y) =
KA(1) ∪ KA(y) = KA(y). Hence, KA(x) ⊆ KA(y).
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Lemma 4. Let A be subalgebra of a KU -algebra E. Let KA ∈ S(X ).
If KA is an (α, β)-US ideal over X , then for all x, y ∈ A : x ≤ y ⇒
KA(x) ∩ β ⊆ KA(y) ∪ α.

Proof. Let x, y ∈ A be such that x ≤ y. Then, y ◦ x = 1, from which,
by Definition 15 and Theorem 3 we get KA(x)∩β ⊆ KA(y ◦x)∪KA(y)∪
α = KA(1)∪KA(y)∪α = KA(y)∪α. Hence, KA(x)∩β ⊆ KA(y)∪α.

Proposition 3. Let A be subalgebra of a KU -algebra E. Let KA ∈
S(X ). If KA is an

(α, β)-US ideal over X , then for all x, y, z ∈ A,KA satisfies the fol-
lowing conditions:

(1) KA(y ◦ x) ∩ β ⊆ KA(z ◦ x) ∪ KA(y ◦ z) ∪ α
(2) KA(y ◦ x) = KA(1)⇒ KA(x) ∩ β ⊆ KA(y) ∪ α.

Proof. (1) Since (z ◦ x) ◦ (y ◦ x) ≤ y ◦ z, then from Lemma 4, KA((z ◦
x) ◦ (y ◦ x)) ⊆ KA(y ◦ z). Hence, KA(y ◦ x) ∩ β ⊆ KA((z ◦ x) ◦ (y ◦ x)) ∪
KA(z ◦ x) ∪ α ⊆ KA(z ◦ x) ∪ KA(y ◦ z) ∪ α.

(2) If KA(y ◦ x) = KA(1), then for all x, y ∈ A, KA(x) ∩ β ⊆ KA(y ◦
x) ∪ KA(y) ∪ α = KA(1) ∪ KA(y) ∪ α = KA(y) ∪ α.

Proposition 4. Let A be subalgebra of a KU -algebra E. If KA is an
(α, β)-US ideal over X , then for all x, y, z ∈ A, the following conditions
are equivalent:

(1) KA(x ◦ y) ∩ β ⊆ KA(x ◦ (x ◦ y)) ∪ α.
(2) KA((z ◦ y) ◦ (z ◦ x)) ∩ β ⊆ KA(z ◦ (y ◦ x)) ∪ α.

Proof. Assume that (1) holds and x, y, z ∈ A. Since z ◦ (z ◦ ((z ◦ y)) ◦
x) = z◦(y◦z)◦(z◦x) ≤ z◦(y◦x) by (1), (ku8), and Lemma 4, we obtain
the following equality: KA((z ◦y)◦ (z ◦x))∩β = KA(z ◦ (y ◦ z)◦x)∩β ⊆
KA(z ◦ (z ◦ (z ◦ y) ◦ x) ∪ α ⊆ KA(z ◦ (y ◦ x)) ∪ α.

Again, assume that (2) holds. If we put y = z in (2), then by (ku3)
and (ku6), we get KA((z ◦ (z ◦ x) ∪ α ⊇ KA((z ◦ z) ◦ (z ◦ x)) ∩ β =
KA(1 ◦ (z ◦ x) ∩ β = KA(z ◦ x) ∩ β, which implies that (1) holds.

Theorem 7. Let A be subalgebra of a KU -algebra E. Then, every
A-soft set is an (α, β)-US ideal over U , and an A-soft set is an (α, β)-US
KU -algebra over X .

Proof. Let KA be an (α, β)-US ideal over X and A a subalgebra of E.
We get y ◦ x ≤ x for all x, y ∈ A. Then, it follows from Lemma 4 that
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KA(y ◦x)∩β ⊆ KA(x)∪α ⊆ KA(x◦y)∪KA(y)∪α ⊆ KA(x)∪KA(y)∪α.
Hence, KA is an (α, β)-US KU -algebra over X .

Theorem 8. Let E be a KU -algebra. Let KA ∈ S(X ) and A be a
subalgebra of E. If KA is an (α, β)-US ideal over X , then for all x, y, z ∈
A,KA satisfies the following condition:
y ◦ x ≤ z ⇒ KA(x) ∩ β ⊆ KA(y) ∪ KA(z) ∪ α.

Proof. Let x, y ∈ A be such that y ◦ x ≤ z, then z ◦ (y ◦ x) = 1⇒ .
KA(y◦x)∩β ⊆ KA(z◦(y◦x)∪KA(z)∪α = KA(1)∪KA(z)∪α = K(z)∪α.

By using Definition 15 and Theorem 3, we get KA(x)∩ β ⊆ KA(y ◦ x)∪
KA(y) ⊆ KA(y) ∪ KA(z) ∪ α.

Theorem 9. Let E be a KU -algebra. Given a subalgebra A of E,
let KA ∈ S(X ) and β ⊆ X . Then, KA is an (α, β)-US ideal over X if
and only if the non-empty set B(KA : δ) is an ideal of A.

Proof. The proof is same as proof of Theorem 2.

6. (α, β)-US Commutative Ideals in KU-Algebras

Definition 15. Let E be a KU -algebra. For a given subalgebras
A of E, let KA ∈ S(X ). Then, KA is called an (α, β)-US commutative
ideal over X if for all x, y, z ∈ A, it satisfies Theorem 3 and the following
condition: KA(((x ◦ y) ◦ y) ◦ x) ∩ β ⊆ KA(z ◦ (y ◦ x)) ∪ KA(z) ∪ α.

Example 7. Let E = {1, 2, 3, 4, 5} be a KU -algebra with the follow-
ing Cayley table:

◦ 1 2 3 4 5

1 1 2 3 4 5
2 1 1 3 4 5
3 1 2 1 4 5
4 1 2 3 1 5
5 1 1 1 1 1

Let (KA, A) be a soft set over X , where A = {2, 3, 4, 5} and KA :
A→ P (X) is a set valued function defined by KA(x) = {y ∈ X|x ◦ y ∈
{1, 3, 4}}. Then, KA(1) = ∅,
KA(2) = {y ∈ X|2 ◦ y ∈ {1, 3, 4}} = {1, 2, 3, 4},
KA(3) = {y ∈ X|3 ◦ y ∈ {1, 3, 4}} = {1, 3, 4},
KA(4) = {y ∈ X|4 ◦ y ∈ {1, 3, 4}} = {1, 3, 4},
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KA(5) = {y ∈ X|5 ◦ y ∈ {1, 3, 4}} = {1, 2, 3, 4, 5}.
Then, KA is an (α, β)-US commutative ideal of A over X , where β =
{1, 2, 4, 5} and α = {1, 2, 4}.

Theorem 10. Let E be a KU -algebra. Then, any (α, β)-US commu-
tative ideal over X is an (α, β)-US ideal over X .

Proof. Let A be a subalgebra of E and KA be an (α, β)-US commu-
tative ideal over X . Now, we put y = 1 in Definition 15 and use (ku5)
and (ku6), then we have KA(x) ∩ β = KA(x ◦ 1)(((x ◦ 1) ◦ 1) ◦ x) ∩ β ⊆
KA(z ◦ (1 ◦ x)) ∪ KA(z) ∪ α = KA(z ◦ x) ∪ KA(z) ∪ α for all x, z ∈ A.
Thus, KA is an (α, β)-US ideal over X .

In view of the following example, we can also establish Theorem 10.

The following theorem provides the condition that an (α, β)-US ideal
over X is an (α, β)-US commutative ideal over X .

Theorem 11. Let E be a KU -algebra and A be a subalgebra of E.
Let KA ∈ S(X ), then KA is an (α, β)-US. commutative ideal over X if
and only if, for all x, y, z ∈ A,KA is an (α, β)-X ideal over X satisfying
the following condition: KA(((x ◦ y) ◦ y) ◦ x) ⊆ KA(y ◦ x).

Proof. Assume that KA is an (α, β)-US ideal commutative ideal over
X . Then, KA is an (α, β)-US soft ideal over X by Theorem 10. Now,
if we take z = 1 in Definition 15 and use (ku5), then we deduce the
condition given in Theorem 11.
Conversely, if KA is an (α, β)-US ideal over X satisfying the condition of
Theorem 11, then for all x, y, z ∈ A, we have KA(y ◦x)∩β ⊆ KA(z ◦ (y ◦
x)∪KA(z)∪α by Definition 14. Hence, from Definition 15, we conclude
that KA is an (α, β)-US commutative ideal over X .

Corollary 1. Let E be a KU -algebra and KE∈S(X ). Then, KE is an
(α, β)-US commutative ideal over X if and only if KE is an (α, β)-US
ideal over X satisfying the following condition for all x, y ∈ A: KE(((x ◦
y) ◦ y) ◦ x) ∩ β ⊆ KA(y ◦ x) ∪ α.

Theorem 12. Let E be a commutative KU -algebra. Then, every
(α, β)-US ideal over X is an (α, β)-US commutative ideal over X .

Proof. Let KA be an (α, β)-US ideal over X , where A is a subalgebra
of E. Then, for all x, y, z ∈ A, we get: z◦(((z◦(y◦x))◦(((x◦y)◦y)◦x))) =
(z ◦ (y ◦ x)) ◦ (z ◦ (((x ◦ y) ◦ y) ◦ x)) ≤ (y ◦ x) ◦ (((x ◦ y) ◦ y) ◦ x) =
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((x◦y)◦y)◦((y◦x)◦x) = 1. Thus, ((z◦y)◦x)◦(((x◦y)◦y)◦x) ≤ z. Then,
from Theorem 8, we getKA(((x◦y)◦y)◦x)∩β ⊆ KA(z◦(y◦x))∪KA(z)∪α.
Hence, KA is an (α, β)-US commutative ideal over X .

Theorem 13. Let E be a KU -algebra and A be a subalgebra of E.
Let KA ∈ S(X ). If KA satisfies the following conditions:
(1). (y ◦ x) ◦ x ≤ (x ◦ y) ◦ y for all x, y ∈ A;
(2) KA is an (α, β)-US ideal over X ; then KA is an (α, β)-US commu-
tative ideal over X .

Proof. For any x, y ∈ A, we have: KA(y◦x)(((x◦y)◦y)◦x) = ((x◦y)◦
y)◦((y◦x)◦x) = 1 by (ku8) and (1). Therefore, ((x◦y)◦y)◦x ≤ y◦x for
all x, y ∈ A, which indicates from Lemma 4 that KA(((x◦y)◦y)◦x)∩β ⊆
KA(y ◦x)∪α. Now, it follows from Theorem 11 that KA is an (α, β)-US
commutative ideal of A over X .

Theorem 14. Let E be a KU -algebra and A be a subalgebra of
E. Consider KA ∈ S(X ) and δ ⊆ β ⊆ X . Then, KA is an (α, β)-US
commutative ideal over X if and only if the non-empty set B(KA : δ) is
a commutative ideal of A.

Proof. The proof follows from Theorem 2.

Theorem 15. Let E be a KU -algebra and KA ∈ S(X ). Define a
soft set K◦A over X by K◦A : E → P(X ) such that K◦A(x) = KA(x) if
x ∈ B(KA : δ) and K◦A(x) = X if x 6∈ B(KA : δ). If KA is an (α, β)-US
commutative ideal over U , then so is K◦A.

Proof. If KA is an (α, β)-US commutative ideal over X , then B(KA :
δ) is a commutative ideal over X by Theorem 14. Hence, 1 ∈ B(KA : δ),
and so, we have K◦A(1)∩β = KA(1)∩β ⊆ KA(x)∪α ⊆ K◦A(x)∪α for all
x ∈ A. Let x, y, z ∈ A. Then, z ◦ (y ◦ x) ∈ B(KA : δ) and z ∈ B(KA : δ)
hence, ((x ◦ y) ◦ y) ◦ x ∈ B(KA : δ), and so, we deduce the following
equality:
K◦A(((x ◦ y) ◦ y) ◦ x) ∩ β = KA(((x ◦ y) ◦ y) ◦ x) ∩ β ⊆ KA(z ◦ (y ◦ x)) ∪
KA(z) ∪ α = K◦A(z ◦ (y ◦ x)) ∪ K◦A(z) ∪ α. If z ◦ (y ◦ x) 6∈ B(KA : δ) and
z 6∈ B(KA : δ), then K◦A(((x ◦ y) ◦ y) ◦ x) or K◦A(z) = X . Thus, we have
K◦A(((x ◦ y) ◦ y) ◦ x) ∩ β ⊆ X = K◦A(z ◦ (y ◦ x)) ∪K◦A(z) ∪ α. This shows
that K◦A is an (α, β)-US commutative ideal of A over X .

Theorem 16. Let E be a KU -algebra and A be a subset of E, which
is a commutative ideal of E if and only if the soft subset KA defined as,
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KA(x) = Ω if x ∈ A andKA(x) = Γ if x 6∈ A, where α ⊆ Ω ⊆ Γ ⊆ β ⊆ X ,
is an (α, β)-US commutative ideal of A over X .

Proof. Let A be a commutative ideal of E and if x ∈ A, then 1 ∈ A.
Therefore, KA(1) = KA(x) = Ω, and so, KA(1) ∩ β = Ω ∩ β = Ω and
KA(x) ∪ α = Ω ∪ α = Ω. Thus, KA(1) ∩ β ⊆ KA(x) ∪ α. Let for any
x, y, z ∈ A and if z ◦ (y ◦ x) ∈ A, z ∈ A, then (((x ◦ y) ◦ y) ◦ x) ∈
A, and thus, KA(z ◦ (y ◦ x) = KA(z) = KA(((x ◦ y) ◦ y) ◦ x) = Ω.
Then, KA(((x ◦ y) ◦ y) ◦ x) ∩ β = Ω ∩ β = Ω and KA(z ◦ (y ◦ x))∪
KA(z)∪α = Ω∪α = Ω, which indicates that KA(((x ◦ y) ◦ y) ◦ x)∩ β ⊆
KA(z ◦ (y ◦ x)) ∪ KA(z) ∪ α. Now, if x 6∈ A, then 1 ∈ A or 1 6∈ A,
and so, KA(1) ∩ β = Ω ∩ β = Ω or KA(1) ∩ β = Γ ∩ β = Γ, but
KA(x) ∪ α = Γ ∪ α = Γ, which implies that KA(1) ∩ β ⊆ KA(x) ∪ α.
Now, if (z ◦ (y ◦ x) 6∈ A or z 6∈ A, then (((x ◦ y) ◦ y) ◦ x) ∈ A or
(((x ◦ y) ◦ y) ◦ x) 6∈ A, and so, KA(((x ◦ y) ◦ y) ◦ x) ∩ β = Ω ∩ β = Ω or
KA(((x◦y)◦y)◦x)∩β = Γ∩β = Γ, but KA(z◦(y◦x)∪KA(z)∪α = Γ∪α =
Γ, which implies that KA(((x◦y)◦y)◦x)∩β ⊆ KA(z◦(y◦x))∪KA(z)∪α.
Hence, KA is an (α, β)-US commutative ideal of A over X .
Conversely, assume that KA is an (α, β)-US commutative ideal of A over
US. If x ∈ A, then KA(1) ∩ β ⊆ KA(x) ∪ α = Ω ∪ α = Ω. However, α ⊆
Ω ⊆ Γ ⊆ β, · hence, KA(1) = Ω, and so, 1 ∈ A. Again, if z ◦ (y ◦ x) ∈ A
and z ∈ A, then KA(((x ◦ y) ◦ y) ◦x)∩β ⊆ KA(z ◦ (y ◦x))∪KA(z)∪α =
Ω ∪ α = Ω, and thus, KA(((x ◦ y) ◦ y) ◦ x) = Ω, which implies that
(((x ◦ y) ◦ y) ◦ x) ∈ A. Therefore, A is a commutative ideal of E .

Theorem 17. (Extension property). Let E be a KU -algebra. For
two given subalgebras A and B of E, let KA,KB ∈ S(X ) such that
i. KA ⊆ KB.
ii. KB is an (α, β)-US ideal over X .
If KA is an (α, β)-US commutative ideal over X , then KB is also an
(α, β)-US commutative ideal over X .

Proof. Let δ ∈ X be such that B(KA : δ) 6= ∅. By Condition ii
and Theorem 14, we see that B(KA : δ) is an ideal. We now consider
KA to be an (α, β)-US commutative ideal of A over X , then B(KA : δ)
is a commutative ideal of A. Let x, y ∈ A and δ ⊆ β be such that
y◦x ∈ B(KA : δ). Since y◦((y◦x)◦x) = (y◦x)◦(y◦x) = 1 ∈ B(KA : δ),
it follows from (ku8) and i that (y ◦ x) ◦ (((((y ◦ x) ◦ x) ◦ y) ◦ y) ◦ x) =
((((y ◦ x) ◦ x) ◦ y) ◦ y) ◦ ((y ◦ x) ◦ x) ∈ B(KA : δ) ⊆ B(KB : δ). We see
that:
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(((((y ◦ x) ◦ x) ◦ y) ◦ y) ◦ x) ∈ B(KB : δ) . . . . . . (1)

as B(KB : δ) is an ideal and x ◦ y ∈ B(KB : δ). Furthermore, it is noted
that (y ◦ x) ◦ x ≤ x, and so, we have (((y ◦ x) ◦ x) ◦ y) ◦ y ≤ (x ◦ y) ◦ y
by (ku7). Thus,

((x ◦ y) ◦ y) ◦ x ≤ ((((y ◦ x) ◦ x) ◦ y) ◦ x) . . . . . . (2)

Hence, by using (1) and (2), we get x ◦ (y ◦ (y ◦ x)) ∈ B(KB : δ).
Therefore, B(KB : δ) is a commutative ideal, and so, KB is an (α, β)-US
commutative ideal over X by Theorem 14.

7. Conclusions

In this paper, we have defined (α, β)-US sets, (α, β)-US ideals and
(α, β)-US commutative ideals over KU algebras. We also investigate a
characterization of (α, β)-US ideals in KU algebras. The given results
over (α, β)-US sets can reflect to other branches like several algebraic
structures, topologies, Vector algebras and lattices.
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