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RELATIVE ϕ-TYPE AND RELATIVE ϕ-WEAK TYPE

BASED SOME GROWTH PROPERTIES OF ENTIRE

FUNCTIONS OF SEVERAL COMPLEX VARIABLES

Tanmay Biswas∗ and Ritam Biswas

Abstract. The principal objective of this paper is to introduce the
ideas of relative ϕ-type, relative ϕ-weak type of entire functions of
several complex variables and study some growth properties con-
cerning them.

1. Introduction, Definitions and Notations

Let f be a non-constant entire function of two complex variables
holomorphic in the closed polydisc

U = {(z1, z2) : |zi| ≤ ri, i = 1, 2 for all r1 ≥ 0, r2 ≥ 0}
and Mf (r1, r2) = max {|f (z1, z2)| : |zi| ≤ ri, i = 1, 2}. Then in view of
maximum principal and Hartogs theorem [9, p. 2, p. 51], Mf (r1, r2) is an
increasing functions of r1, r2. In this connection the following definition
is well known:

Definition 1. {[9, p. 339] (see also [1])} The order v2ρ (f) and the
lower order v2λ (f) of an entire function f of two complex variables are
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defined as

v2ρ (f)

v2λ (f)
= lim

r1,r2→∞

sup
inf

log logMf (r1, r2)

log (r1r2)
.

The equivalent formula for v2ρ (f) is [9, p. 338] is

v2ρ (f) = inf µ > 0 : Mf (r1, r2) < exp [(r1r2)
µ] , for all r1 ≥ R (µ) , r2 ≥ R (µ) .

Similarly, one can define v2λ (f) as

v2λ (f) = supµ > 0 : Mf (r1, r2) > exp [(r1r2)
µ] , for all r1 ≥ R (µ) , r2 ≥ R (µ) .

The rate of growth of entire function of two complex variables nor-
mally depends upon the order of it. The entire function of two complex
variables with higher order is of faster growth than that of lesser order.
But if orders of two entire functions of two complex variables are the
same, then it is impossible to detect the function with faster growth. In
that case, it is necessary to compute another class of growth indicators
of entire functions of two complex variables called their type and lower
type and thus one can define type and lower type of an entire function
f of two complex variables denoted by v2σ (f) and v2σ (f) respectively
in the following way:

Definition 2. [12, p. 339] The type v2σ (f) and the lower type

v2σ (f) of an entire function f of two complex variables are defined as

v2σ (f)

v2σ (f)
= lim

r→+∞

sup
inf

logMf (r1, r2)

rv2
ρ(f)

1 + rv2
ρ(f)

2

where 0 < v2ρ (f) <∞.

The above can alternatively be written as

v2σ (f) = inf
{
µ > 0 : Mf (r1, r2) < exp

(
µrv2

ρ(f)
1 + µrv2

ρ(f)
2

)
for all r1 ≥ R (µ) , r2 ≥ R (µ)}

and

v2σ (f) = sup
{
µ > 0 : Mf (r1, r2) > exp

(
µrv2

ρ(f)
1 + µrv2

ρ(f)
2

)
for all r1 ≥ R (µ) , r2 ≥ R (µ)} .

Similarly one may define the following growth indicators:
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Definition 3. The weak type v2τ (f) and the lower weak type v2τ (f)
of an entire function f of two complex variables are defined as

v2τ (f) = inf
{
µ > 0 : Mf (r1, r2) < exp

(
µrv2

λ(f)
1 + µrv2

λ(f)
2

)
for all r1 ≥ R (µ) , r2 ≥ R (µ)}

and

v2τ (f) = sup
{
µ > 0 : Mf (r1, r2) > exp

(
µrv2

λ(f)
1 + µrv2

λ(f)
2

)
for all r1 ≥ R (µ) , r2 ≥ R (µ)} .

In [7], Chyzhykov et al. introduced the definition of ϕ-order of a
meromorphic function on single variable in the unit disc. For details
about ϕ-order, one may see [7]. Consequently the definition of ϕ-order
of entire function holomorphic in the closed polydisc {(z1, z2) : |zi| ≤
ri, i = 1, 2 for all r1 ≥ 0, r2 ≥ 0} is established in [5] which is as follows:

Definition 4. [5] Let ϕi (r1, r2) | i = 1, 2 : [0,+∞) × [0,+∞) →
(0,+∞) be a non-decreasing unbounded function of two variables r1
and r2. The ϕ-order of an entire function f of two complex variables
denoted by v2ρ (f, ϕ) is defined as:

v2ρ (f, ϕ) = inf {µ > 0 : Mf (r1, r2) < exp [(ϕ1 (r1, r2)ϕ2 (r1, r2))
µ] ;

r1 ≥ R (µ) , r2 ≥ R (µ)} .

Analogously, one can define the ϕ-lower order of f of two complex
variables denoted by v2λ (f, ϕ) as follows :

v2λ (f, ϕ) = sup {µ > 0 : Mf (r1, r2) > exp [(ϕ1 (r1, r2)ϕ2 (r1, r2))
µ] ;

r1 ≥ R (µ) , r2 ≥ R (µ)} ,

where ϕi (r1, r2) | i = 1, 2 : [0,+∞) × [0,+∞) → (0,+∞) be a non-
decreasing unbounded function of two variables r1 and r2.

Extending this notion, it is natural for us to give the definitions of
ϕ-type and ϕ-lower type of entire functions holomorphic in the closed
polydisc {(z1, z2) : |zi| ≤ ri, i = 1, 2 for all r1 ≥ 0, r2 ≥ 0} which are as
follows:

Definition 5. Let ϕi (r1, r2) | i = 1, 2 : [0,+∞) × [0,+∞) →
(0,+∞) be a non-decreasing unbounded function of two variables r1 and
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r2. The ϕ-type and ϕ-lower type of an entire function f of two complex
variables denoted respectively by v2σ (f, ϕ) and v2σ (f, ϕ) are defined as:

v2σ (f, ϕ) = inf{µ > 0 : Mf (r1, r2)

< exp
(
µϕ1 (r1, r2)

v2ρ(f,ϕ) + µϕ2 (r1, r2)
v2ρ(f,ϕ)

)
for all r1 ≥ R (µ) , r2 ≥ R (µ)}.

and

v2σ (f, ϕ) = sup{µ > 0 : Mf (r1, r2)

> exp
(
µϕ1 (r1, r2)

v2ρ(f,ϕ) + µϕ2 (r1, r2)
v2ρ(f,ϕ)

)
for all r1 ≥ R (µ) , r2 ≥ R (µ)}.

Similarly one may define the following growth indicators:

Definition 6. Let ϕi (r1, r2) | i = 1, 2 : [0,+∞) × [0,+∞) →
(0,+∞) be a non-decreasing unbounded function of two variables r1
and r2. The ϕ-weak type v2τ (f, ϕ) and ϕ-lower weak type v2τ (f, ϕ) of
an entire function f of two complex variables are defined as:

v2τ (f, ϕ) = inf{µ > 0 : Mf (r1, r2)

< exp
(
µϕ1 (r1, r2)

v2λ(f,ϕ) + µϕ2 (r1, r2)
v2λ(f,ϕ)

)
for all r1 ≥ R (µ) , r2 ≥ R (µ)}.

and

v2τ (f, ϕ) = sup{µ > 0 : Mf (r1, r2)

> exp
(
µϕ1 (r1, r2)

v2λ(f,ϕ) + µϕ2 (r1, r2)
v2λ(f,ϕ)

)
for all r1 ≥ R (µ) , r2 ≥ R (µ)}.

Now if we consider Definition 1 for single variable, then the defini-
tion coincides with the classical definition of order (see [15]) which is as
follows:

Definition 7. [15] The order ρ (f) and the lower order λ (f) of an
entire function f are defined in the following way:

ρ (f)
λ (f)

= lim
r→∞

sup
inf

log logMf (r)

log r
,

where Mf (r) = max {|f (z)| : |z| = r}.
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Further if f is non-constant then Mf (r) is strictly increasing and
continuous, and its inverse Mf

−1 : (|f (0)| ,∞) → (0,∞) exists and is
such that lim

s→∞
Mf
−1 (s) =∞. Bernal {[2], [3]} introduced the definition

of relative order of f with respect to g, denoted by ρg (f) as follows :

ρg (f) = inf {µ > 0 : Mf (r) < Mg (rµ) for all r > r0 (µ) > 0}

= lim sup
r→∞

logM−1
g (Mf (r))

log r
.

The definition coincides with the classical one [15] if g (z) = exp z.
During the past decades, several authors (see [6],[10],[11],[12],[13],[14])

made close investigations on the properties of relative order of entire
functions of single variable. In the case of relative order, it was then
natural for Banerjee and Dutta [4] to define the relative order of entire
functions of two complex variables as follows:

Definition 8. [4] The relative order between two entire functions of
two complex variables denoted by v2ρg (f) is defined as:

v2ρg (f) = inf {µ > 0 : Mf (r1, r2) < Mg (rµ1 , r
µ
2 ) ; r1 ≥ R (µ) , r2 ≥ R (µ)}

where f and g are entire functions holomorphic in the closed polydisc

U = {(z1, z2) : |zi| ≤ ri, i = 1, 2 for all r1 ≥ 0, r2 ≥ 0}
and the definition coincides with Definition 1 {see [4]} if g (z) = exp (z1z2) .

Extending this notion, Dutta [8] introduced the idea of relative order
of entire functions of several complex variables in the following way:

Definition 9. [8] Let f(z1, z2, ..., zn) and g(z1, z2, ..., zn) be any two
entire functions of n variables z1, z2, ..., zn with maximum modulus func-
tions
Mf (r1, r2, ..., rn) and Mg (r1, r2, ..., rn) respectively then the relative

order of f with respect to g, denoted by vnρg (f) is defined by

vnρg (f) = inf {µ > 0 : Mf (r1, r2, ..., rn) < Mg (rµ1 , r
µ
2 , ..., r

µ
n) ;

for ri ≥ R (µ) , i = 1, 2, ..., n} .

Similarly, one can define the relative lower order of f with respect to
g denoted by vnλg (f) as follows :

vnλg (f) = sup {µ > 0 : Mf (r1, r2, ..., rn) > Mg (rµ1 , r
µ
2 , ..., r

µ
n) ;

for ri ≥ R (µ) , i = 1, 2, ..., n} .
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Now in order to refine the above growth scale, one may introduce the
definitions of other growth indicators, such as relative type and relative
lower type between two entire functions of severable complex variables
which are as follows:

Definition 10. Let f(z1, z2, ..., zn) and g(z1, z2, ..., zn) be any two
entire functions of n variables z1, z2, ..., zn with maximum modulus func-
tions

Mf (r1, r2, ..., rn) and Mg (r1, r2, ..., rn) respectively. Then the relative
type vnσg (f) and the relative lower type vnσg (f) of f with respect to g
with non-zero finite relative order vnρg (f) are defined as:

vnσg (f) = inf {µ > 0 : Mf (r1, r2, ..., rn)

< Mg

(
µrvn

ρg(f)
1 , µrvn

ρg(f)
2 , ..., µrvnρg(f)n

)
;

for ri ≥ R (µ) , i = 1, 2, ..., n} .

and

vnσg (f) = sup {µ > 0 : Mf (r1, r2, ..., rn)

> Mg

(
µrvn

ρg(f)
1 , µrvn

ρg(f)
2 , ..., µrvnρg(f)n

)
;

for ri ≥ R (µ) , i = 1, 2, ..., n} .

Analogously, to determine the relative growth of f of two complex
variables having same non zero finite relative lower order with respect
to another entire function g of severable complex variables, one can
introduce the definition of relative weak type vnτg (f) and relative lower
weak type vnτ g (f) of f with respect to g of finite positive relative lower
order vnλg (f) in the following way:

Definition 11. Let f(z1, z2, ..., zn) and g(z1, z2, ..., zn) be any two
entire functions of n variables z1, z2, ..., zn with maximum modulus func-
tions

Mf (r1, r2, ..., rn) and Mg (r1, r2, ..., rn) respectively. Then the relative
weak type vnτg (f) and the relative lower weak type vnτ g (f) of f with
respect to g with non-zero finite relative lower order vnλg (f) are defined
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as:

vnτg (f) = inf {µ > 0 : Mf (r1, r2, ..., rn)

< Mg

(
µrvn

λg(f)
1 , µrvn

λg(f)
2 , ..., µrvnλg(f)n

)
;

for ri ≥ R (µ) , i = 1, 2, ..., n} .
and

vnτ g (f) = sup {µ > 0 : Mf (r1, r2, ..., rn)

> Mg

(
µrvn

λg(f)
1 , µrvn

λg(f)
2 , ..., µrvnλg(f)n

)
;

for ri ≥ R (µ) , i = 1, 2, ..., n} .

Now in order to make some progress in the study of relative order
of entire functions of several complex variables,in [5], the definition of
relative ϕ-order between two entire functions of several complex variables
is given which is as follows:

Definition 12. Let ϕi (r1, r2, ..., rn) | i = 1, 2, .., n : [0,+∞) ×
[0,+∞) × ... × [0,+∞) → (0,+∞) be a non-decreasing unbounded
function of n variables r1, r2, ..., rn. Also let f and g be any two en-
tire functions of n complex variables with maximum modulus functions
Mf (r1, r2, ..., rn) and Mg (r1, r2, ..., rn) respectively then the relative ϕ-
order of f with respect to g, denoted by

vnρg (f, ϕ) is defined by

vnρg (f, ϕ) = inf {µ > 0 : Mf (r1, r2, ..., rn) < Mg (ϕµ1 , ϕ
µ
2 , ..., ϕ

µ
n) ;

for ri ≥ R (µ) , i = 1, 2, ..., n} ,
where ϕi | i = 1, 2, .., n stand for ϕi (r1, r2, ..., rn) | i = 1, 2, .., n.

Likewise, one can define the relative ϕ-lower order of f with respect
to g denoted by vnλg (f, ϕ) as follows :

vnλg (f, ϕ) = sup {µ > 0 : Mf (r1, r2, ..., rn) > Mg (ϕµ1 , ϕ
µ
2 , ..., ϕ

µ
n) ;

for ri ≥ R (µ) , i = 1, 2, ..., n} ,
where ϕi | i = 1, 2, .., n : [0,+∞) × [0,+∞) × ... × [0,+∞) → (0,+∞)
be a non-decreasing unbounded function of n variables r1, r2, ..., rn.

Further an entire function f of several complex variables for which
relative ϕ-order and relative ϕ-lower order with respect to another entire
function g of several complex variables are the same is called a function
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of regular relative ϕ-growth with respect to g. Otherwise, f is said to
be irregular relative ϕ-growth.with respect to g.

Moreover in order to refine the above growth scale, one may introduce
the definitions of other growth indicators, such as relative ϕ-type and
relative ϕ-lower type between two entire functions of severable complex
variables which are as follows:

Definition 13. Let f and g be two entire functions of n variables
r1, r2, ..., rn and ϕi(r1, r2, ..., rn)|i = 1, 2, ..., n : [0,+∞) × [0,∞) × ... ×
[0,∞)→ [0,∞) be a non-decreasing unbounded functions of n variables
r1, r2, ..., rn. Also let 0 < vnρg(f, ϕ) <∞. Then we can define the relative
ϕ-type of the function f with respect to g, denoted by vnσg(f, ϕ), in the
following manner:

vnσg(f, ϕ) = inf {µ > 0 : Mf (r1, r2, ..., rn)

< Mg(µϕ
vnρg(f,ϕ)
1 , µϕvn

ρg(f,ϕ)
2 , ..., µϕvnρg(f,ϕ)n );

for ri ≥ R (µ) , i = 1, 2, ..., n} ,
Similarly, one can introduce the relative ϕ-lower type of f with respect
to g, denoted by vnσg(f, ϕ) as

vnσg(f, ϕ) = sup {µ > 0 : Mf (r1, r2, ..., rn)

> Mg(µϕ
vnρg(f,ϕ)
1 , µϕvn

ρg(f,ϕ)
2 , ..., µϕvnρg(f,ϕ)n );

for ri ≥ R (µ) , i = 1, 2, ..., n} .
In the like manner, to measure the relative growth of an entire func-

tion f of n variables having the relative ϕ-lower order with respect to
another one, say g, the notion of relative ϕ-weak type vnτ g(f, ϕ) and the
growth-indicator vnτg(f, ϕ) can be defined as follows.

Definition 14. Let f and g be two entire functions of n variables
r1, r2, ..., rn and ϕi(r1, r2, ..., rn)|i = 1, 2, ..., n : [0,+∞) × [0,∞) × ... ×
[0,∞)→ [0,∞) be a non-decreasing unbounded functions of n variables
r1, r2, ..., rn. Then the relative ϕ-weak type vnτg(f, ϕ) and the relative
ϕ-lower weak type vnτ g(f, ϕ) of an entire function f with non-zero finite
relative ϕ-lower order vnλg(f, ϕ) are defined as:

vnτg(f, ϕ) = inf {µ > 0 : Mf (r1, r2, ..., rn)

< Mg(µϕ
vnλg(f,ϕ)
1 , µϕvn

λg(f,ϕ)
2 , ..., µϕvnλg(f,ϕ)n );

for ri ≥ R (µ) , i = 1, 2, ..., n} ,
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and

vnτ g(f, ϕ) = sup {µ > 0 : Mf (r1, r2, ..., rn)

> Mg(µϕ
vnλg(f,ϕ)
1 , µϕvn

λg(f,ϕ)
2 , ..., µϕvnλg(f,ϕ)n );

for ri ≥ R (µ) , i = 1, 2, ..., n} .

Here, in this paper, we study some basic properties of relative ϕ-type
and relative ϕ-weak type of entire functions of several complex variables
with respect to another one. We do not explain the standard definitions
and notations in the theory of entire function of several complex variables
as those are available in [9].

2. Main Results

In this section we present the main results of the paper. First of all,
we recall one related known property which will be needed in order to
prove our results, as we see in the following theorem.

Theorem 1. [5] Let f , g and h be any three entire functions of several
complex variables such that 0 < vnλh (f, ϕ) ≤ vnρh (f, ϕ) < ∞ and 0 <

vnλh (g) ≤ vnρh (g) <∞. Then

vnλh (f, ϕ)

vnρh (g)
≤ vnλg (f, ϕ) ≤ min

{
vnλh (f, ϕ)

vnλh (g)
,
vnρh (f, ϕ)

vnρh (g)

}
≤ max

{
vnλh (f, ϕ)

vnλh (g)
,
vnρh (f, ϕ)

vnρh (g)

}
≤ vnρg (f, ϕ) ≤ vnρh (f, ϕ)

vnλh (g)
.

Remark 1. [5] From the conclusion of Theorem 1, one may write

vnρg (f, ϕ) = vnρh(f,ϕ)

vnρh(g)
and vnλg (f, ϕ) = vnλh(f,ϕ)

vnλh(g)
when vnλh (g) =

vnρh (g). Similarly vnρg (f, ϕ) = vnλh(f,ϕ)

vnλh(g)
and vnλg (f, ϕ) = vnρh(f,ϕ)

vnρh(g)

when vnλh (f, ϕ) = vnρh (f, ϕ) .

Theorem 2. Let f , g and h be any three entire functions of several
complex variables such that 0 < vnρh (f, ϕ) < ∞ and 0 < vnλh (g) ≤
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vnρh (g) <∞. Then

max

{(
vnσh (f, ϕ)

vnτh (g)

) 1
vnλh(g)

,

(
vnσh (f, ϕ)

vnτh (g)

) 1
vnλh(g)

}

≤ vnσg (f, ϕ) ≤
(
vnσh (f, ϕ)

vnσh (g)

) 1
vnρh(g)

.

Proof. Let us consider that ε (> 0) is arbitrary number. Now from
the definitions of vnσg (f, ϕ) and vnσg (f, ϕ) , we have for all sufficiently
large values of r1, r2, ..., rn that

(1) Mf (r1, r2, ..., rn) < Mg

(
(vnσg (f, ϕ) + ε)ϕvn

ρg(f,ϕ)
1 ,

(vnσg (f, ϕ) + ε)ϕvn
ρg(f,ϕ)

2 , ..., (vnσg (f, ϕ) + ε)ϕvnρg(f,ϕ)n

)
,

(2) Mf (r1, r2, ..., rn) > Mg

(
(vnσg (f, ϕ)− ε)ϕvnρg(f,ϕ)1 ,

(vnσg (f, ϕ)− ε)ϕvnρg(f,ϕ)2 , ..., (vnσg (f, ϕ)− ε)ϕvnρg(f,ϕ)n

)
,

and also for a sequence of values of r1, r2, ..., rn tending to infinity, we
get that

(3) Mf (r1, r2, ..., rn) > Mg

(
(vnσg (f, ϕ)− ε)ϕvnρg(f,ϕ)1 ,

(vnσg (f, ϕ)− ε)ϕvnρg(f,ϕ)2 , ..., (vnσg (f, ϕ)− ε)ϕvnρg(f,ϕ)n

)
,

(4) Mf (r1, r2, ..., rn) < Mg

(
(vnσg (f, ϕ) + ε)ϕvn

ρg(f,ϕ)
1 ,

(vnσg (f, ϕ) + ε)ϕvn
ρg(f,ϕ)

2 , ..., (vnσg (f, ϕ) + ε)ϕvnρg(f,ϕ)n

)
.

Similarly from the definitions of vnσh (g) and vnσh (g) , it follows for all
sufficiently large values of r1, r2, ..., rn that

(5) Mg (r1, r2, ..., rn) < Mh

(
(vnσh (g) + ε) rvn

ρh(g)
1 ,

(vnσh (g) + ε) rvn
ρh(g)

2 , ..., (vnσh (g) + ε) rvnρh(g)n

)
,

(6) Mg (r1, r2, ..., rn) > Mh

(
(vnσh (g)− ε) rvnρh(g)1 ,

(vnσh (g)− ε) rvnρh(g)2 , ..., (vnσh (g)− ε) rvnρh(g)n

)
.
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Also for a sequence of values of r1, r2, ..., rn tending to infinity, we obtain
that

(7) Mg (r1, r2, ..., rn) > Mh

(
(vnσh (g)− ε) rvnρh(g)1 ,

(vnσh (g)− ε) rvnρh(g)2 , ..., (vnσh (g)− ε) rvnρh(g)n

)
,

(8) Mg (r1, r2, ..., rn) < Mh

(
(vnσh (g) + ε) rvn

ρh(g)
1 ,

(vnσh (g) + ε) rvn
ρh(g)

2 , ..., (vnσh (g) + ε) rvnρh(g)n

)
.

Further from the definitions of vnτg (f, ϕ) and vnτ g (f, ϕ), we have for
all sufficiently large values of r1, r2, ..., rn that

(9) Mf (r1, r2, ..., rn) < Mg

(
(vnτg (f, ϕ) + ε)ϕvn

λg(f,ϕ)
1 ,

(vnτg (f, ϕ) + ε)ϕvn
λg(f,ϕ)

2 , ..., (vnτg (f, ϕ) + ε)ϕvnλg(f,ϕ)n

)
,

(10) Mf (r1, r2, ..., rn) > Mg

(
(vnτ g (f, ϕ)− ε)ϕvnλg(f,ϕ)1 ,

(vnτ g (f, ϕ)− ε)ϕvnλg(f,ϕ)2 , ..., (vnτ g (f, ϕ)− ε)ϕvnλg(f,ϕ)n

)
.

and also for a sequence of values of r1, r2, ..., rn tending to infinity, we
get that

(11) Mf (r1, r2, ..., rn) > Mg

(
(vnτg (f, ϕ)− ε)ϕvnλg(f,ϕ)1 ,

(vnτg (f, ϕ)− ε)ϕvnλg(f,ϕ)2 , ..., (vnτg (f, ϕ)− ε)ϕvnλg(f,ϕ)n

)
,

(12) Mf (r1, r2, ..., rn) < Mg

(
(vnτ g (f, ϕ) + ε)ϕvn

λg(f,ϕ)
1 ,

(vnτ g (f, ϕ) + ε)ϕvn
λg(f,ϕ)

2 , ..., (vnτ g (f, ϕ) + ε)ϕvnλg(f,ϕ)n

)
.

Similarly from the definitions of vnτh (g) and vnτh (g) , it follows for
all sufficiently large values of r1, r2, ..., rn that

(13) Mg (r1, r2, ..., rn) < Mh

(
(vnτh (g) + ε) rvn

λh(g)
1 ,

(vnτh (g) + ε) rvn
λh(g)

2 , ..., (vnτh (g) + ε) rvnλh(g)n

)
,

(14) Mg (r1, r2, ..., rn) > Mh

(
(vnτh (g)− ε) rvnλh(g)1 ,
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(vnτh (g)− ε) rvnλh(g)2 , ..., (vnτh (g)− ε) rvnλh(g)n

)
.

Also for a sequence of values of r1, r2, ..., rn tending to infinity, we obtain
that

(15) Mg (r1, r2, ..., rn) > Mh

(
(vnτh (g)− ε) rvnλh(g)1 ,

(vnτh (g)− ε) rvnλh(g)2 , ..., (vnτh (g)− ε) rvnλh(g)n

)
,

(16) Mg (r1, r2, ..., rn) < Mh

(
(vnτh (g) + ε) rvn

λh(g)
1 ,

(vnτh (g) + ε) rvn
λh(g)

2 , ..., (vnτh (g) + ε) rvnλh(g)n

)
.

Therefore from (1) and in view of (13), we get for all sufficiently large
values of r1, r2, ..., rn that

Mf (r1, r2, ..., rn) <

Mh

(
(vnτh (g) + ε) (vnσg (f, ϕ) + ε)vnλh(g) ϕ

vnλh(g)vnρg(f,ϕ)

1 ,

(vnτh (g) + ε) (vnσg (f) + ε)vnλh(g) ϕ
vnλh(g)vnρg(f,ϕ)

2 , ...,

(vnτh (g) + ε) (vnσg (f) + ε)vnλh(g) ϕ
vnλh(g)vnρg(f,ϕ)
n

)
.

Since in view of Theorem 1 vnρh(f,ϕ)

vnλh(g)
≥ vnρg (f, ϕ) and ε (> 0) is arbi-

trary, we get from above that

vnσh (f, ϕ) ≤ vnτh (g) vnσg (f, ϕ)vnλh(g)

i.e., vnσg (f, ϕ) ≥
(
vnσh (f, ϕ)

vnτh (g)

) 1
vnλh(g)

.(17)

Analogously from (1) and (16), we get that

(18) vnσg (f, ϕ) ≥
(
vnσh (f, ϕ)

vnτh (g)

) 1
vnλh(g)

,

as in view of Theorem 1 it follows that vnρh(f,ϕ)

vnλh(g)
≥ vnρg (f, ϕ) . Further in

view of Theorem 1, since vnρh(f,ϕ)

vnρh(g)
≤ vnρg (f, ϕ), we obtain from (3) and

(6) for a sequence of values of r1, r2, ..., rn tending to infinity that

Mf (r1, r2, ..., rn) > Mh

(
(vnσh (g)− ε) (vnσg (f, ϕ)− ε)vnρh(g) ϕvnρh(f,ϕ)1 ,

(vnσh (g)− ε) (vnσg (f, ϕ)− ε)vnρh(g) ϕvnρh(f,ϕ)2 , ...,
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(vnσh (g)− ε) (vnσg (f, ϕ)− ε)vnρh(g) ϕvnρh(f,ϕ)n

)
.

As ε (> 0) is arbitrary, we get from above that

vnσh (f, ϕ) ≥ vnσh (g) vnσg (f, ϕ)vnρh(g)

i.e., vnσg (f, ϕ) ≤
(
vnσh (f, ϕ)

vnσh (g)

) 1
vnρh(g)

.(19)

Thus the theorem follows from (17), (18) and (19).

Since in view of Theorem 1, it follows that vnλh(f,ϕ)

vnρh(g)
≤ vnρg (f, ϕ) and

vnλh(f,ϕ)

vnλh(g)
≤ vnρg (f, ϕ), therefore the conclusion of the following theorem

can be carried out from (3) and (6); (3) and (14) respectively after
applying the same technique of Theorem 2. So its proof is omitted.

Theorem 3. Let f , g and h be any three entire functions of several
complex variables such that 0 < vnλh (f, ϕ) < ∞ and 0 < vnλh (g) ≤
vnρh (g) <∞. Then

vnσg (f, ϕ) ≤ min

{(
vnτh (f, ϕ)

vnτh (g)

) 1
vnλh(g)

,

(
vnτh (f, ϕ)

vnσh (g)

) 1
vnρh(g)

}
.

Similarly in the line of Theorem 2 and with the help of Theorem 1,
one may easily carry out the following theorem from pairwise inequalities
numbers (12) and (13) ; (6) and (10) ; (7) and (10); respectively and
therefore its proof is omitted:

Theorem 4. Let f , g and h be any three entire functions of several
complex variables such that 0 < vnλh (f, ϕ) ≤ vnρh (f, ϕ) < ∞ and 0 <
vnλh (g) ≤ vnρh (g) <∞. Then(
vnτh (f, ϕ)

vnτh (g)

) 1
vnλh(g) ≤ vnτ g (f, ϕ)

≤ min

{(
vnτh (f, ϕ)

vnσh (g)

) 1
vnρh(g)

,

(
vnτh (f, ϕ)

vnσh (g)

) 1
vnρh(g)

}
.

Theorem 5. Let f , g and h be any three entire functions of several
complex variables such that 0 < vnρh (f, ϕ) < ∞ and 0 < vnλh (g) ≤
vnρh (g) <∞. Then

vnτ g (f, ϕ) ≥ max

{(
vnσh (f, ϕ)

vnσh (g)

) 1
vnρh(g)

,

(
vnσh (f, ϕ)

vnτh (g)

) 1
vnλh(g)

}
.
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With the help of Theorem 1, the conclusion of the above theorem can
be carried out from (5) , (12) and (12) , (13) respectively after applying
the same technique of Theorem 2 and therefore its proof is omitted.

Similarly in view of Theorem 1, the conclusion of the following theo-
rem can be carried out from pairwise inequalities numbered (4) and (13) ;
(2) and (7) ; (2) and (6) respectively after applying the same technique
of Theorem 2 and therefore its proof is omitted.

Theorem 6. Let f , g and h be any three entire functions of several
complex variables such that 0 < vnρh (f, ϕ) < ∞ and 0 < vnλh (g) ≤
vnρh (g) <∞. Then(
vnσh (f, ϕ)

vnτh (g)

) 1
vnλh(g) ≤ vnσg (f, ϕ)

≤ min

{(
vnσh (f, ϕ)

vnσh (g)

) 1
vnρh(g)

,

(
vnσh (f, ϕ)

vnσh (g)

) 1
vnρh(g)

}
.

Theorem 7. Let f , g and h be any three entire functions of several
complex variables such that 0 < vnλh (f, ϕ) < ∞ and 0 < vnλh (g) ≤
vnρh (g) <∞. Then

vnσg (f, ϕ) ≤ min

{(
vnτh (f, ϕ)

vnτh (g)

) 1
vnλh(g)

,

(
vnτh (f, ϕ)

vnτh (g)

) 1
vnλh(g)

,

(
vnτh (f, ϕ)

vnσh (g)

) 1
vnρh(g)

,

(
vnτh (f, ϕ)

vnσh (g)

) 1
vnρh(g)

}
.

The conclusion of the above theorem can be carried out from pairwise
inequalities numbered (2) and (14) ; (2) and (15) ; (2) and (7); (2) and
(6) respectively after applying the same technique of Theorem 2 and
with the help of Theorem 1. Therefore its proof is omitted.

Similarly in the line of Theorem 2 and with the help of Theorem 1,
one may easily carry out the following theorem from pairwise inequalities
numbered (9) and (13) ; (9) and (16); (6) and (11) respectively and
therefore its proof is omitted:

Theorem 8. Let f , g and h be any three entire functions of several
complex variables such that 0 < vnλh (f, ϕ) < ∞ and 0 < vnλh (g) ≤
vnρh (g) <∞. Then

max

{(
vnτh (f, ϕ)

vnτh (g)

) 1
vnλh(g)

,

(
vnτh (f, ϕ)

vnτh (g)

) 1
vnλh(g)

}
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≤ vnτg (f, ϕ) ≤
(
vnτh (f, ϕ)

vnσh (g)

) 1
vnρh(g)

.

Theorem 9. Let f , g and h be any three entire functions of several
complex variables such that 0 < vnλh (f, ϕ) ≤ vnρh (f, ϕ) < ∞ and 0 <

vnλh (g) ≤ vnρh (g) <∞. Then

vnτg (f, ϕ) ≥ max

{(
vnσh (f, ϕ)

vnσh (g)

) 1
vnρh(g)

,

(
vnσh (f, ϕ)

vnσh (g)

) 1
vnρh(g)

,

(
vnσh (f, ϕ)

vnτh (g)

) 1
vnλh(g)

,

(
vnσh (f, ϕ)

vnτh (g)

) 1
vnλh(g)

}
.

The conclusion of the above theorem can be carried out from pairwise
inequalities numbered (8) and (9) ; (5) and (9) ; (9) and (13); (9) and
(16) respectively after applying the same technique of Theorem 2 and
with the help of Theorem 1. Therefore its proof is omitted.

Now we state the following two theorems without their proofs as be-
cause those can be derived easily using the same technique or with some
easy reasoning with the help of Remark 1 and therefore left to the read-
ers.

Theorem 10. Let f , g and h be any three entire functions of several
complex variables such that 0 < vnρh (f, ϕ) <∞ and 0 < vnρh (g) (= vnλh (g))
<∞. Then(

vnσh (f, ϕ)

vnσh (g)

) 1
vnρh(g)

≤ vnσg (f, ϕ)

≤ min

{(
vnσh (f, ϕ)

vnσh (g)

) 1
vnρh(g)

,

(
vnσh (f, ϕ)

vnσh (g)

) 1
vnρh(g)

}

≤ max

{(
vnσh (f, ϕ)

vnσh (g)

) 1
vnρh(g)

,

(
vnσh (f, ϕ)

vnσh (g)

) 1
vnρh(g)

}

≤ vnσg (f, ϕ) ≤
(
vnσh (f, ϕ)

vnσh (g)

) 1
vnρh(g)

.

Remark 2. In Theorem 10, if we will replace the conditions
“ 0 < vnρh (f, ϕ) < ∞ and 0 < vnρh (g) (= vnλh (g)) < ∞” by “ 0 <

vnρh (f, ϕ) (= vnλh (f, ϕ)) < ∞ and 0 < vnρh (g) < ∞” respectively,
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then Theorem 10 remains valid with vnτ g (f, ϕ) and vnτg (f, ϕ) replacing

vnσg (f, ϕ) and vnσg (f, ϕ) respectively.

Theorem 11. Let f , g and h be any three entire functions of several
complex variables such that 0 < vnρh (f, ϕ) (= vnλh (f, ϕ)) <∞ and 0 <

vnλh (g) <∞. Then(
vnτh (f, ϕ)

vnτh (g)

) 1
vnλh(g)

≤ vnσg (f, ϕ)

≤ min

{(
vnτh (f, ϕ)

vnτh (g)

) 1
vnλh(g)

,

(
vnτh (f, ϕ)

vnτh (g)

) 1
vnλh(g)

}

≤ max

{(
vnτh (f, ϕ)

vnτh (g)

) 1
vnλh(g)

,

(
vnτh (f, ϕ)

vnτh (g)

) 1
vnλh(g)

}

≤ vnσg (f, ϕ) ≤
(
vnτh (f, ϕ)

vnτh (g)

) 1
vnλh(g)

.

Remark 3. In Theorem 11, if we will replace the conditions “ 0 <

vnρh (f, ϕ)
(= vnλh (f, ϕ)) <∞ and 0 < vnλh (g) <∞” by “ 0 < vnλh (f, ϕ) <∞

and 0 < vnρh (g) (= vnλh (g)) < ∞” respectively, then Theorem 11
remains valid with vnτ g (f, ϕ) and vnτg (f, ϕ) replacing vnσg (f, ϕ) and

vnσg (f, ϕ) respectively.
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