MULTIPLIERS OF DIRICHLET-TYPE SUBSPACES OF BLOCH SPACE

SONGXIAO LI, ZENGJIAN LOU, AND CONGHUI SHEN

Abstract. Let $M(X, Y)$ denote the space of multipliers from X to Y, where X and Y are analytic function spaces. As we known, for Dirichlet-type spaces D_p^{α}, $M(D_p^{p - 1}, D_q^{q - 1}) = \{0\}$, if $p \neq q$, $0 < p, q < \infty$. If $0 < p, q < \infty$, $p \neq q$, $0 < s < 1$ such that $p + s, q + s > 1$, then $M(D_p^{p - 2 + s}, D_q^{q - 2 + s}) = \{0\}$. However, $X \cap D_p^{p - 1} \subseteq X \cap D_q^{q - 1}$ and $X \cap D_p^{p - 2 + s} \subseteq X \cap D_q^{q - 2 + s}$ whenever X is a subspace of the Bloch space B and $0 < p \leq q < \infty$. This says that the set of multipliers $M(X \cap D_p^{p - 2 + s}, X \cap D_q^{q - 2 + s})$ is nontrivial. In this paper, we study the multipliers $M(X \cap D_p^{p - 2 + s}, X \cap D_q^{q - 2 + s})$ for distinct classical subspaces X of the Bloch space B, where $X = B$, $BMOA$ or H^∞.

1. Introduction

Let D denote the unit disk of the complex plane \mathbb{C} and ∂D be the boundary of D, the unit circle. Denote by $H(D)$ the space of all analytic functions in D. The Bloch space B, consists of those $f \in H(D)$ for which

$$
\|f\|_B = |f(0)| + \sup_{z \in \partial D} (1 - |z|^2)|f'(z)| < \infty.
$$

Let $f \in H(D)$. For $0 < p < \infty$, $0 < r < 1$, set

$$
M_p^p(r, f) = \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta
$$

and

$$
M_\infty(r, f) = \sup_{|z|=r} |f(z)|.
$$

The Hardy space $H^p(0 < p \leq \infty)$ is defined as the space of $f \in H(D)$ such that

$$
\|f\|_{H^p} = \sup_{0<r<1} M_p(r, f) < \infty.
$$

Received March 18, 2019; Revised September 22, 2019; Accepted October 16, 2019.
2010 Mathematics Subject Classification. Primary 30H30, 47B38, 32A37.
Key words and phrases. Multipliers, Carleson measure, Dirichlet-type space, Bloch space.
The research was supported by the National Natural Science Foundation of China (Nos.11571217, 11720101003, 11871293) and Key Projects of Fundamental Research in Universities of Guangdong Province (No.2018KZDXM034).

©2020 Korean Mathematical Society
For the theory about the Hardy space H^p, we refer the readers to [6]. The $BMOA$ space is the set of those $f \in H^1$ whose boundary values have bounded mean oscillation on the unit circle $\partial \mathbb{D}$ [10]. It is well known that $BMOA$ is contained in the Bloch space B continuously.

The weighted Dirichlet-type space $D^p_\alpha(0 < p < \infty, \alpha > -1)$ is the class of all $f \in H(\mathbb{D})$ such that

$$
\|f\|_{D^p_\alpha} = |f(0)|^p + \int_{\mathbb{D}} |f'(z)|^p dA_\alpha(z) < \infty,
$$

here $dA_\alpha(z) = (\alpha + 1)(1 - |z|^2)^\alpha dA(z)$ and $dA(z) = \frac{1}{2} dxdy$ is the normalized Lebesgue area measure. It is well known that when $p < \alpha + 1$, $D^p_\alpha = A^p_{\alpha - p}$, the Bergman space [7]. If $p > \alpha + 2$, then $D^p_\alpha \subseteq H^\infty$. Therefore, when $\alpha + 1 \leq p \leq \alpha + 2$, D^p_α is a proper Dirichlet-type space. The spaces $D^p_{\alpha - 1}$ are closely related with Hardy spaces. In fact, $D^1_1 = H^2$. Notice that when $0 < p \leq 2$, $D^p_{\alpha - 1} \subseteq H^p$ [7]. When $2 \leq p < \infty$, $H^p \subseteq D^p_{\alpha - 1}$ [14].

For $g \in H(\mathbb{D})$, the multiplication operator M_g is defined by

$$
M_gf(z) = g(z)f(z), \quad z \in \mathbb{D}, \quad f \in H(\mathbb{D}).
$$

Let X, Y be the norm spaces of analytic functions in \mathbb{D}. We denote by $M(X, Y)$ the space of multipliers from X to Y, in other words,

$$
M(X, Y) = \{g \in H(\mathbb{D}) : fg \in Y, \; \forall f \in X\}.
$$

For convenience, we write $M(X) := M(X, X)$. Denote the norm of the multiplication operator M_g by $\|M_g\|$. From [2,3], we see that

$$
M(B) = H^\infty \cap B_{\log}.
$$

Here B_{\log} is the logarithmic Bloch space, consists of those $f \in H(\mathbb{D})$ for which

$$
\|f\|_{B_{\log}} = |f(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2)|f'(z)| \left(\log \frac{2}{1 - |z|^2}\right) < \infty.
$$

In [15], we have that

$$
M(BMOA) = BMOA_{\log} \cap H^\infty,
$$

where $BMOA_{\log}$ is the space of those functions $f \in H^1$ such that the positive Borel measure $(1 - |z|^2)|f'(z)|^2dA(z)$ is a 2-logarithmic Carleson measure. In other words, $f \in BMOA_{\log}$ if and only if $f \in H^1$ such that

$$
\sup_{a \in \mathbb{D}} \left(\log \frac{2}{1 - |a|}\right)^2 \int_{\mathbb{B}} |f'(z)|^2(1 - |\varphi_a(z)|^2)dA(z) < \infty,
$$

where φ_a is the disk automorphism which interchange the origin and a, that is

$$
\varphi_a(z) = \frac{a - z}{1 - \overline{a}z}, \quad z \in \mathbb{D}.
$$

The multipliers of Dirichlet-type space D^p_α have been studied in [8,9,11,12]. In [8], the authors proved that for $1 < p \leq q < \infty$, a function $g \in H(\mathbb{D})$ belongs to $M(D^p_{\alpha - 2}, D^q_{\alpha - 2})$ if and only if $g \in H^q$ and the positive Borel measure μ...
defined by \(d\mu(z) = |g'(z)|^q(1 - |z|^2)^{q-2}dA(z) \) is a \(q \)-Carleson measure for \(\mathcal{D}_q^{\alpha} \).

If \(1 < q < p < \infty \), then \(M(\mathcal{D}_p^{\alpha}, \mathcal{D}_q^{\alpha}) = \{0\} \).

It is standard that if \(0 < p, q < \infty \) and \(p \neq q \), then we have
\[
M(\mathcal{D}_p^{\alpha-1}, \mathcal{D}_q^{\alpha-1}) = \{0\}.
\]

Let \(X \) be a non-zero subspace of the Bloch space \(\mathcal{B} \). The space \(X \cap \mathcal{D}_p^{\alpha} \) is equipped with the norm
\[
\|f\|_{X \cap \mathcal{D}_p^{\alpha}} = \|f\|_X + \|f\|_{\mathcal{D}_p^{\alpha}}.
\]

Lemma 1 in [5] says that if \(0 < p \leq q < \infty \), then \(X \cap \mathcal{D}_p^{\alpha} \subseteq X \cap \mathcal{D}_q^{\alpha} \). It follows that the set of multipliers \(M(X \cap \mathcal{D}_p^{\alpha}, X \cap \mathcal{D}_q^{\alpha}) \) is nontrivial.

By Corollary 1 in [12] and Theorem 2 in [9], for all \(p \neq q \) and \(0 < s < 1 \),
\[
M(\mathcal{D}_p^{\alpha-1+s} \cap \mathcal{D}_q^{\alpha-1+s}) = \{0\}.
\]

But when \(0 < p \leq q < \infty \), if \(f \in X \cap \mathcal{D}_p^{\alpha} \), then
\[
\int_D |f'(z)|^p(1 - |z|^2)^{p-2+s}dA(z) \leq \|f\|_{\mathcal{B}}^p \int_D |f'(z)|^p(1 - |z|^2)^{p-2+s}dA(z)
\leq \|f\|_{\mathcal{B}}^p \|f\|_{\mathcal{D}_p^{\alpha}}^p
\leq C\|f\|_{X \cap \mathcal{D}_p^{\alpha}}^p \|f\|_{\mathcal{D}_p^{\alpha}}^p
\leq C\|f\|_{X \cap \mathcal{D}_p^{\alpha}}^p \|f\|_{\mathcal{D}_p^{\alpha}}^p.
\]

Hence \(f \in X \cap \mathcal{D}_q^{\alpha} \) and \(\|f\|_{X \cap \mathcal{D}_q^{\alpha}} \leq C\|f\|_{X \cap \mathcal{D}_p^{\alpha}} \). In other words, \(X \cap \mathcal{D}_p^{\alpha} \subseteq X \cap \mathcal{D}_q^{\alpha} \). So the set of multipliers \(M(X \cap \mathcal{D}_p^{\alpha}, X \cap \mathcal{D}_q^{\alpha}) \) is also nontrivial.

From [5], we see that if \(q > 1 \) and \(0 < p \leq q < \infty \), then
\[
M(\mathcal{B} \cap \mathcal{D}_p^{\alpha}, \mathcal{B} \cap \mathcal{D}_q^{\alpha}) = M(\mathcal{B})
\]
and
\[
M(BMOA \cap \mathcal{D}_p^{\alpha}, BMOA \cap \mathcal{D}_q^{\alpha}) = M(BMOA).
\]

If \(0 < p \leq q < \infty \), then
\[
M(\mathcal{H}_p^{\infty} \cap \mathcal{D}_p^{\alpha}, \mathcal{H}_q^{\infty} \cap \mathcal{D}_q^{\alpha}) = \mathcal{H}_p^{\infty} \cap \mathcal{D}_q^{\alpha}.
\]

Motivated by [8] and [5], it is natural to ask what is the set of multipliers \(M(X \cap \mathcal{D}_p^{\alpha}, X \cap \mathcal{D}_q^{\alpha}) \) when \(0 < s < 1 \). In this paper, we characterize the multipliers \(M(X \cap \mathcal{D}_p^{\alpha}, X \cap \mathcal{D}_q^{\alpha}) \) when \(0 < s < 1 \). Our main results are stated as follows.

Theorem 1.1. Suppose that \(g \in \mathcal{H}(\mathbb{D}) \), \(0 < p \leq q < \infty \), \(0 < s < 1 \) satisfying \(p + s > 1 \). Define the positive Borel measure \(\mu \) by \(d\mu(z) = |g'(z)|^q(1 - |z|^2)^{q-2}dA(z) \), then

(i) \(g \in M(\mathcal{B} \cap \mathcal{D}_p^{\alpha}, \mathcal{B} \cap \mathcal{D}_q^{\alpha}) \) if and only if \(g \in M(\mathcal{B}) \) and \(\mu \) is a \(q \)-Carleson measure for \(\mathcal{B} \cap \mathcal{D}_p^{\alpha} \).
(ii) $g \in M(BMOA \cap D_{p-2+s}^p, BMOA \cap D_{q-2+s}^q)$ if and only if $g \in M(BMOA)$ and μ is a q-Carleson measure for $BMOA \cap D_{p-2+s}^p$.

(iii) $M(\mathcal{H}_\infty \cap D_{p-2+s}^p, \mathcal{H}_\infty \cap D_{q-2+s}^q) = \mathcal{H}_\infty \cap D_{q-2+s}^q$.

Theorem 1.2. Suppose $0 < q < p < \infty$, $0 < s < 1$ with $q+s > 1$. Then

(i) $M(B \cap D_{p-2+s}^p, B \cap D_{q-2+s}^q) = \{0\}$.

(ii) $M(BMOA \cap D_{p-2+s}^p, BMOA \cap D_{q-2+s}^q) = \{0\}$.

(iii) $M(\mathcal{H}_\infty \cap D_{p-2+s}^p, \mathcal{H}_\infty \cap D_{q-2+s}^q) = \{0\}$.

Throughout this paper, C denotes a positive constant depending only on indexes p, q, s, \ldots, it is not necessary to be the same from one line to another. Let f and g be two positive functions. For convenience, we write $f \preceq g$, if $f \leq Cg$ holds, where C is a positive constant independent of f and g. If $f \sim g$ and $g \preceq f$, then we say $f \asymp g$.

2. Preliminary

In this section, we state some definitions and lemmas which will be used in the paper. Let I be an arc of $\partial \mathbb{D}$. Denote the normalized Lebesgue measure of I by $|I|$, that is, $|I| = \frac{1}{\pi} \int_I |d\xi|$. For an arc $I \subseteq \partial \mathbb{D}$, the Carleson square based on I is defined by

$$S(I) := \left\{ z \in \mathbb{D} : 1 - |I| \leq |z| < 1, \frac{z}{|z|} \in I \right\}.$$

If $I = \partial \mathbb{D}$, then we set $S(I) = \mathbb{D}$. Let μ be a positive Borel measure on \mathbb{D}. For $0 \leq \alpha < \infty, 0 < s < \infty$, we say that μ is an α-logarithmic s-Carleson measure if there exists a constant $C > 0$ such that for all arcs $I \subseteq \partial \mathbb{D}$,

$$\mu(S(I)) \leq C \frac{|I|^s}{(\log \frac{1}{|I|})^\alpha}.$$

If $\alpha = 0$, then μ is called an s-Carleson measure. If $\alpha = 0$ and $s = 1$, then μ is said to be a Carleson measure. Recall that an $f \in H^1$ belongs to the space $BMOA$ if and only if the positive Borel measure $|f'(z)|^2(1 - |z|^2)dA(z)$ is a Carleson measure.

Let $(X, \| \cdot \|_X)$ be a normed space of analytic functions. Then a positive Borel measure μ on \mathbb{D} is said to be an s-Carleson measure for X, if there exists a constant $C > 0$ such that for all $f \in X$,

$$\int_{\mathbb{D}} |f(z)|^sd\mu(z) \leq C\|f\|_X^s.$$

The following lemma can be found in Theorem 2 of [17], which plays an important role in the proofs of theorems.

Lemma 2.1. Suppose that $0 \leq \alpha < \infty$ and $0 < s < \infty$. Then a positive Borel measure μ on \mathbb{D} is an α-logarithmic s-Carleson measure if and only if

$$\sup_{a \in \partial \mathbb{D}} \left(\log \frac{2}{1 - |a|} \right)^\alpha \int_{\mathbb{D}} \left(\frac{1 - |a|^2}{1 - a\bar{z}} \right)^s d\mu(z) < \infty.$$
We will make use of the lacunary power series (also called power series with Hadamard gaps) of a function \(f \in \mathcal{H}(\mathbb{D}) \), that is, \(f \) is of the form

\[
f(z) = \sum_{k=0}^{\infty} a_k z^{n_k}, \quad z \in \mathbb{D},
\]

with \(\frac{n_{k+1}}{n_k} \geq \lambda > 1 \) for all \(k \). Several known results on lacunary power series will be used in this paper. We put them together in the following statement, see [1,4,5,13,19].

Lemma 2.2. Suppose that \(0 < p < \infty, \alpha > -1 \). \(f \in \mathcal{H}(\mathbb{D}) \) which is given by a lacunary power series,

\[
f(z) = \sum_{k=0}^{\infty} a_k z^{n_k}, \quad z \in \mathbb{D}.
\]

Then

(i) \(f \in D_p^{\alpha} \) if and only if \(\sum_{k=0}^{\infty} n_k^{p-\alpha-1} |a_k|^p < \infty \), and

\[
\| f - f(0) \|_{D_p^{\alpha}} \asymp \sum_{k=0}^{\infty} n_k^{p-\alpha-1} |a_k|^p.
\]

(ii) \(f \in H^\infty \) if and only if \(\sum_{k=0}^{\infty} |a_k| < \infty \), and

\[
\| f \|_{H^\infty} \asymp \sum_{k=0}^{\infty} |a_k|.
\]

(iii) \(f \in B \) if and only if \(\sup_k |a_k| < \infty \), and

\[
\| f \|_B \asymp \sup_k |a_k|.
\]

The following estimate can be found in [13].

Lemma 2.3. Suppose that \(\beta > -1, s > 0 \) and \(f \in \mathcal{H}(\mathbb{D}) \) with \(f(z) = \sum_{k=1}^{\infty} a_k z^{n_k}, \ z \in \mathbb{D} \). Then

\[
\sum_{k=1}^{\infty} n_k^{-(\beta+1)} |a_k|^s \asymp \int_0^1 (1 - r)^\beta |f(re^{i\theta})|^s \, dr
\]

for all \(\theta \in \mathbb{R} \).

The following lemma is useful in theory of analytic function spaces and operator theory, see [18].

Lemma 2.4. Suppose that \(z \in \mathbb{D}, c \) is real, \(t > -1 \), and

\[
I_{c,t}(z) = \int_{\mathbb{D}} \frac{(1 - |w|^2)^t}{|1 - z\bar{w}|^{2t+2+c}} dA(w).
\]

(i) If \(c < 0 \), then as a function of \(z \), \(I_{c,t} \) is bounded on \(\mathbb{D} \).

(ii) If \(c = 0 \), then

\[
I_{c,t}(z) \asymp \log \frac{1}{1 - |z|^2} \quad \text{as} \quad |z| \to 1^-.
\]

(iii) If \(c > 0 \), then

\[
I_{c,t}(z) \asymp \frac{1}{(1 - |z|^2)^c} \quad \text{as} \quad |z| \to 1^-.
\]
We will use the following estimate to prove our results, which can be found in [16].

Lemma 2.5. For $s > -1$, $r, t > 0$ with $0 < r + t - s - 2 < r$, there exists a constant $C > 0$ such that for any $a, b \in D$,

$$
\int_D \frac{(1 - |z|^2)^s}{|1 - \bar{a}z|^r|1 - bz|^t} dA(z) \leq \frac{C}{(1 - |a|^2)^{r+t-s-2}}.
$$

3. **Proof of main results**

Proof of Theorem 1.1. (i) First suppose that $g \in M(B \cap D_{p-2+s}^p, B \cap D_{q-2+s}^q)$. For any $a \in D$, let φ_a be defined by (3) and f_a be defined by

$$
f_a(z) = \log \frac{1}{1 - \bar{a}z}, \quad z \in D.
$$

A simple computation shows that $\sup_{a \in D} \|\varphi_a\|_B < \infty$ and $\sup_{a \in D} \|\varphi_a\|_{D_{p-2+s}^p} < \infty$. This implies that $\varphi_a \in B \cap D_{p-2+s}^p$ and $\sup_{a \in D} \|\varphi_a\|_{B \cap D_{p-2+s}^p} < \infty$. We have $g\varphi_a \in B \cap D_{q-2+s}^q$ and

$$
(1 - |z|^2)|(g\varphi_a)'(z)| \leq \|g\varphi_a\|_B
\leq \|g\varphi_a\|_{B \cap D_{q-2+s}^q}
\leq \|M_g\| \|\varphi_a\|_{B \cap D_{p-2+s}^p} \leq C\|M_g\|,
$$

that is,

$$
(1 - |z|^2)g'(z)\varphi_a(z) + g(z)\varphi'_a(z) \leq C\|M_g\|.
$$

Taking $z = a$, using the fact that $\varphi_a(a) = 0$ and $|\varphi'_a(a)| = \frac{1}{1 - |a|^2}$ we get

$$
|g(a)| \leq C\|M_g\|,
$$

which implies that $g \in \mathcal{H}^\infty$.

It is obvious that $f'_a(z) = \frac{a}{1 - \bar{a}z}$ and $\sup_{a \in D} \|f_a\|_B < \infty$. By Lemma 2.4, there is a constant $C > 0$ independent of a such that

$$
\int_D |f'_a(z)|^p(1 - |z|^2)^{-2p+s}dA(z) \leq \int_D \frac{(1 - |z|^2)^p}{|1 - \bar{a}z|^p}dA(z)
\leq \int_D \frac{(1 - |z|^2)^p}{|1 - az|^{2p+2p-2s}}dA(z)
\leq C.
$$

This implies that $\sup_{a \in D} \|f_a\|_{D_{p-2+s}^p} < \infty$. Hence, we have $f_a \in B \cap D_{p-2+s}^p$ and $\sup_{a \in D} \|f_a\|_{B \cap D_{q-2+s}^q} < \infty$. So $g f_a \in B \cap D_{q-2+s}^q$ and

$$
(1 - |z|^2)|(gf_a)'(z)| \leq \|gf_a\|_{B \cap D_{q-2+s}^q} \leq \|M_g\| \|f_a\|_{B \cap D_{p-2+s}^p} \leq C\|M_g\|.
$$
On the other hand, since $g \in \mathcal{H}^\infty$,
\[
(1 - |z|^2)|g(z)f_a(z)| \leq \|g\|_{\mathcal{H}^\infty} \|f_a\|_{\mathcal{B}} \leq C\|g\|_{\mathcal{H}^\infty}.
\]
Combining (4) and (5) we deduce that
\[
(1 - |z|^2)|g'(z)f_a(z)| \leq C(\|M_g\| + \|g\|_{\mathcal{H}^\infty}).
\]
Taking $z = a$ we obtain
\[
(1 - |a|^2)|g'(a)| \log \frac{1}{1 - |a|^2} \leq C,
\]
which shows that $g \in \mathcal{B}_{log}$. From (1) we see that $g \in M(\mathcal{B})$.

We next show that $d\mu(z) = |g'(z)|^q(1 - |z|^2)^{q-2+s}dA(z)$ is a q-Carleson measure for $\mathcal{B} \cap \mathcal{D}_{p-2+s}^p$. Let $f \in \mathcal{B} \cap \mathcal{D}_{p-2+s}^p$. Since $g \in \mathcal{H}^\infty$, we have
\[
\int_{\mathcal{D}} |g(z)|^q |f'(z)|^q(1 - |z|^2)^{q-2+s}dA(z) \leq \|g\|^q_{\mathcal{H}^\infty} \|f\|^q_{\mathcal{B} \cap \mathcal{D}_{p-2+s}^p} \leq \|g\|^q_{\mathcal{H}^\infty} \|f\|^q_{\mathcal{B} \cap \mathcal{D}_{p-2+s}^p}.
\]
Note that $gf \in \mathcal{B} \cap \mathcal{D}_{q-2+s}^q$,
\[
\int_{\mathcal{D}} |(gf)'(z)|^q(1 - |z|^2)^{q-2+s}dA(z) \leq \|gf\|^q_{\mathcal{B} \cap \mathcal{D}_{q-2+s}^q} \leq \|M_g\|^q \|f\|^q_{\mathcal{B} \cap \mathcal{D}_{p-2+s}^p}.
\]
Combining (6) and (7) implies
\[
\int_{\mathcal{D}} |f(z)|^q |g'(z)|^q(1 - |z|^2)^{q-2+s}dA(z) \leq C(\|g\|^q_{\mathcal{H}^\infty} + \|M_g\|^q) \|f\|^q_{\mathcal{B} \cap \mathcal{D}_{p-2+s}^p}.
\]
That is, $d\mu(z) = |g'(z)|^q(1 - |z|^2)^{q-2+s}dA(z)$ is a q-Carleson measure for $\mathcal{B} \cap \mathcal{D}_{p-2+s}^p$.

Suppose that $g \in M(\mathcal{B})$ and $d\mu(z) = |g'(z)|^q(1 - |z|^2)^{q-2+s}dA(z)$ is a q-Carleson measure for $\mathcal{B} \cap \mathcal{D}_{p-2+s}^p$, we prove that $g \in M(\mathcal{B} \cap \mathcal{D}_{p-2+s}^p, \mathcal{B} \cap \mathcal{D}_{q-2+s}^q)$. For any $f \in \mathcal{B} \cap \mathcal{D}_{p-2+s}^p$, we have $gf \in \mathcal{B}$. It remains to prove that $gf \in \mathcal{D}_{q-2+s}^q$. Since $d\mu(z) = |g'(z)|^q(1 - |z|^2)^{q-2+s}dA(z)$ is a q-Carleson measure for $\mathcal{B} \cap \mathcal{D}_{p-2+s}^p$, there is a constant $C > 0$ independent of f such that
\[
\int_{\mathcal{D}} |f(z)|^q |g'(z)|^q(1 - |z|^2)^{q-2+s}dA(z) \leq C\|f\|^q_{\mathcal{B} \cap \mathcal{D}_{p-2+s}^p}.
\]
Combining (6) and (8) we see that
\[
\int_{\mathcal{D}} |(gf)'(z)|^q(1 - |z|^2)^{q-2+s}dA(z) \leq C\|gf\|^q_{\mathcal{B} \cap \mathcal{D}_{p-2+s}^p} \leq C\|f\|^q_{\mathcal{B} \cap \mathcal{D}_{p-2+s}^p},
\]
which implies that $gf \in \mathcal{D}_{q-2+s}^q$.

The idea of proofs of (ii) and (iii) is similar to that of (i). For the completeness of the paper, we give their proofs briefly below.

(ii) Assume that $g \in M(BMOA \cap \mathcal{D}_{p-2+s}^p, BMOA \cap \mathcal{D}_{q-2+s}^q)$. For any $a \in \mathbb{D}$, let φ_a and f_a be defined as in the proof of (i). An easy computation shows
Since \(\sup_{a \in \mathbb{D}} \| f_a \|_{\mathcal{D}^q_{p-2+s}} < \infty \). Since \(\frac{1}{2\pi} \int_{0}^{2\pi} \frac{1}{1 - a e^{i\theta}} |d\theta| < \infty \), we have \(f_a \in \mathcal{H}^1 \).

Since \(f'_a(z) = \frac{a}{1 - az} \), by Lemma 2.5, there exists a constant \(C > 0 \) such that

\[
\int_{\mathbb{D}} |f'_a(z)|^2 (1 - |\varphi(z)|^2) dA(z) = \int_{\mathbb{D}} \frac{|a|^2}{|1 - \overline{a}z|^2} \frac{(1 - |b|^2)(1 - |z|^2)}{|1 - bz|^2} dA(z) \\
\leq (1 - |b|^2) \int_{\mathbb{D}} \frac{1 - |z|^2}{|1 - \overline{a}z|^2|1 - bz|^2} dA(z) \\
\leq C.
\]

Hence, the Borel measure \(|f'_a(z)|^2 (1 - |z|^2) dA(z) \) is a Carleson measure by Lemma 2.1, so \(f_a \in BMOA \). Since \(C \) is independent of \(a \), we deduce that \(\sup_{a \in \mathbb{D}} \| f_a \|_{BMOA} < \infty \). Hence, \(f_a \in BMOA \cap \mathcal{D}^p_{p-2+s} \) and \(\sup_{a \in \mathbb{D}} \| f_a \|_{BMOA \cap \mathcal{D}^p_{p-2+s}} < \infty \). In addition, a similar argument implies \(g \in \mathcal{H}^\infty \). So \(g f_a \in BMOA \cap \mathcal{D}^q_{q-2+s} \). Hence, there exists a constant \(C > 0 \) such that for any arc \(I \),

\[
(9) \int_{S(I)} |(g f_a)'(z)|^2 (1 - |z|^2) dA(z) \leq C |I|
\]

and

\[
(10) \int_{S(I)} |f'_a(z)|^2 (1 - |z|^2) dA(z) \leq C |I|.
\]

Then by \(g \in \mathcal{H}^\infty \), (9) and (10) we obtain

\[
(11) \int_{S(I)} |g'(z)|^2 |f_a(z)|^2 (1 - |z|^2) dA(z) \leq C |I|.
\]

Take \(a = (1 - |I|) e^{i\theta} \), where \(e^{i\theta} \) is the center of \(I \), then for any \(z \in S(I) \),

\[
|1 - \overline{a}z| = 1 - |a| = |I|, \quad |f_a(z)| \asymp \log \frac{1}{|I|}.
\]

Thus (11) implies that

\[
\left(\log \frac{1}{|I|} \right)^2 \int_{S(I)} |g'(z)|^2 (1 - |z|^2) dA(z) \leq C |I|,
\]

in other words, \(g \in BMOA_{q, \log} \). Therefore \(g \in M(BMOA) \) from (2).

We turn to show that \(|g'(z)|^q (1 - |z|^2)^{q-2+s} dA(z) \) is a \(q \)-Carleson measure for \(BMOA \cap \mathcal{D}^p_{p-2+s} \). For every \(f \in BMOA \cap \mathcal{D}^p_{p-2+s} \), we have \(g f \in BMOA \cap \mathcal{D}^q_{q-2+s} \) and

\[
\int_{\mathbb{D}} |(g f)'(z)|^q (1 - |z|^2)^{q-2+s} dA(z) \leq \| g f \|_{\mathcal{D}^q_{q-2+s}}^q \\
\leq \| g \|_{BMOA \cap \mathcal{D}^p_{p-2+s}}^q \| f \|_{BMOA \cap \mathcal{D}^p_{p-2+s}}^q \\
\leq \| M_g \|_{BMOA \cap \mathcal{D}^p_{p-2+s}} \| f \|_{BMOA \cap \mathcal{D}^p_{p-2+s}}.
\]

(12)
A similar argument as in the proof of (i) shows that

\[(13) \quad \int_D |g(z)|^q |f'(z)|^q (1 - |z|^2)^{q-2+s} dA(z) \leq \|g\|_{BMOA}^q \|f\|_{BMOA \cap D_{p-2+s}^q}^q. \]

Combining (12) and (13) yields

\[\int_D |f(z)|^q |g'(z)|^q (1 - |z|^2)^{q-2+s} dA(z) \leq C (\|g\|_{BMOA}^q + \|M_q g\|_{BMOA}^q) \|f\|_{BMOA \cap D_{p-2+s}^q}^q. \]

We conclude that \(d\mu(z) = |g'(z)|^q (1 - |z|^2)^{q-2+s} dA(z) \) is a \(q \)-Carleson measure for \(BMOA \cap D_{p-2+s}^q \).

Conversely, for any \(f \in BMOA \cap D_{p-2+s}^q \), we have \(gf \in BMOA \). We only need to prove \(gf \in D_{q-2+s}^q \). By hypothesis, there exists a constant \(C > 0 \) independent of \(f \) such that

\[(14) \quad \int_D |f(z)|^q |g'(z)|^q (1 - |z|^2)^{q-2+s} dA(z) \leq C \|f\|_{BMOA \cap D_{p-2+s}^q}^q. \]

By (13) and (14) we obtain

\[\int_D |(gf)'(z)|^q (1 - |z|^2)^{q-2+s} dA(z) \leq C \|f\|_{BMOA \cap D_{p-2+s}^q}^q. \]

That is, \(gf \in D_{q-2+s}^q \).

(iii) We only need to show

\[M(\mathcal{H}^\infty \cap D_{p-2+s}^q, \mathcal{H}^\infty \cap D_{q-2+s}^q) \supseteq \mathcal{H}^\infty \cap D_{q-2+s}^q, \]

since the converse is obvious.

Let \(g \in \mathcal{H}^\infty \cap D_{q-2+s}^q \). For any \(f \in \mathcal{H}^\infty \cap D_{p-2+s}^q \), we have \(gf \in \mathcal{H}^\infty \). It remains to prove that \(gf \in D_{q-2+s}^q \). These hypothesis imply

\[\int_D |f(z)|^q |g'(z)|^q (1 - |z|^2)^{q-2+s} dA(z) \leq \|f\|_{\mathcal{H}^\infty}^q \|g\|_{D_{p-2+s}^q}^q \leq \|f\|_{\mathcal{H}^\infty \cap D_{p-2+s}^q}^q \|g\|_{D_{q-2+s}^q}^q. \]

and

\[\int_D |g(z)|^q |f'(z)|^q (1 - |z|^2)^{q-2+s} dA(z) \leq \|g\|_{\mathcal{H}^\infty}^q \|f\|_{\mathcal{H}^\infty \cap D_{p-2+s}^q}^q. \]

Hence

\[\int_D |(gf)'(z)|^q (1 - |z|^2)^{q-2+s} dA(z) \leq C (\|g\|_{D_{p-2+s}^q}^q + \|g\|_{\mathcal{H}^\infty}^q) \|f\|_{\mathcal{H}^\infty \cap D_{p-2+s}^q}^q. \]

The proof is complete. \(\square \)

Proof of Theorem 1.2. (i) Suppose that \(g \in M(\mathcal{B} \cap D_{p-2+s}^q, \mathcal{B} \cap D_{q-2+s}^q) \) and \(g \neq 0 \), then \(g \in \mathcal{B} \cap D_{q-2+s}^q \). Let

\[f(z) = \sum_{k=0}^{\infty} a_k z^{n_k}, \quad a_k = n_k^{\frac{1}{q}}, \quad z \in \mathbb{D}, \]

MULTIPLIERS OF DIRICHLET-TYPE SUBSPACES OF BLOCH SPACE 437

\[\sum_{k=0}^{\infty} a_k z^{n_k}, \quad a_k = n_k^{\frac{1}{q}}, \quad z \in \mathbb{D}, \]
with $\frac{n_{k+1}}{n_k} \geq \lambda > 1$ for all k. Since $\sum_{k=1}^{\infty} |a_k| < \infty$, by Lemma 2.2 we have $f \in H^\infty \subseteq B$. It is not difficult to see that $\sum_{k=0}^{\infty} n_k^{1-s} |a_k|^p < \infty$, Lemma 2.2 yields $f \in D_{p-2+s}^p$. Hence $f \in B \cap D_{p-2+s}^p$ and $fg \in B \cap D_{q-2+s}^q$. We have
\[
\int_D (1 - |z|^2)^{q-2+s}|(gf)'(z)|^q dA(z) \leq \|gf\|_{D_{q-2+s}^q}^q < \infty
\]
and
\[
\int_D (1 - |z|^2)^{q-2+s}|g'(z)|^q dA(z) \leq \|g\|_{D_{q-2+s}^q}^q < \infty.
\]
These imply
\[
(15) \quad \int_D (1 - |z|^2)^{q-2+s}|g(z)f'(z)|^q dA(z) < \infty.
\]
On the other hand, $f'(z) = \sum_{k=0}^{\infty} a_k n_k z^{n_k-1}$, by Lemma 2.3 we see that
\[
\int_0^1 (1 - r)^{q-2+s} |f'(re^{i\theta})|^q dr \approx \sum_{k=0}^{\infty} n_k^{-(q+s-1)} |a_k n_k|^q = \infty.
\]
Since $g \in D_{q-2+s}^q \subseteq H^q$ (see [9], p. 1877), g has a finite and nonzero radial limit almost everywhere on the boundary of D. Thus
\[
\int_0^1 (1 - r)^{q-2+s} |f'(re^{i\theta})|^q |g(re^{i\theta})|^q dr = \infty
\]
for almost all $\theta \in \mathbb{R}$ (see [9], p. 1878). This is in contradiction to (15).

(iii) Assume that $g \in M(BMOA \cap D_{p-2+s}^p, BMOA \cap D_{q-2+s}^q)$ and $g \neq 0$, then $g \in BMOA \cap D_{q-2+s}^q$. Let $a_k = (2^k) \frac{1}{k^s}$, $k = 1, 2, \ldots$, and
\[
f(z) = \sum_{k=0}^{\infty} a_k z^{2^k}, \quad z \in D.
\]
Then $f \in H^\infty \cap D_{p-2+s}^p$, by Lemma 2.2. Hence $f \in BMOA \cap D_{p-2+s}^p$ and $fg \in BMOA \cap D_{q-2+s}^q$. So
\[
\int_D (1 - |z|^2)^{q-2+s}|(gf)'(z)|^q dA(z) \leq \|gf\|_{D_{q-2+s}^q}^q < \infty
\]
and
\[
\int_D (1 - |z|^2)^{q-2+s}|g'(z)f(z)|^q dA(z) \leq \|f\|_{H^\infty}^q \|g\|_{D_{q-2+s}^q}^q < \infty.
\]
We get
\[
\int_D (1 - |z|^2)^{q-2+s}|g(z)f'(z)|^q dA(z) < \infty.
\]
Since \(f'(z) = \sum_{k=0}^{\infty} 2^k a_k z^{2^k - 1} \), from Lemma 2.3,
\[
\int_0^1 (1-r)^{q-2+s} |f'(re^{i\theta})|^q dr \leq \sum_{k=0}^{\infty} (2^k)^{-s} |a_k 2^k|^q = \infty.
\]
Therefore, for almost all \(\theta \in \mathbb{R} \),
\[
\int_0^1 (1-r)^{q-2+s} |f'(re^{i\theta})|^q |g(re^{i\theta})|^q dr = \infty.
\]
This is a contradiction.

(iii) Assume \(g \in \mathcal{M}(\mathcal{H}^\infty \cap \mathcal{D}_p^{p-2+s}, \mathcal{H}^\infty \cap \mathcal{D}_q^{q-2+s}) \) and \(g \neq 0 \), then \(g \in \mathcal{H}^\infty \cap \mathcal{D}_q^{q-2+s} \). Let \(f \in \mathcal{H}(\mathbb{D}) \) be defined as in the proof of (i). The same argument as in the proof of (i) shows that \(f \in \mathcal{H}^\infty \cap \mathcal{D}_p^{p-2+s} \). So \(fg \in \mathcal{H}^\infty \cap \mathcal{D}_q^{q-2+s} \), i.e.,
\[
\int_\mathbb{D} (1-|z|^2)^{q-2+s} |(gf)'(z)|^q dA(z) \leq \|gf\|_{\mathcal{D}_q^{q-2+s}}^q.
\]
In addition,
\[
\int_\mathbb{D} (1-|z|^2)^{q-2+s} |g(z)f'(z)|^q dA(z) \leq \|f\|_{\mathcal{H}^\infty}^q \|g\|_{\mathcal{D}_q^{q-2+s}}^q.
\]
We have
\[
\int_\mathbb{D} (1-|z|^2)^{q-2+s} |g(z)f'(z)|^q dA(z) < \infty.
\]
On the other hand, by Lemma 2.3 we deduce that
\[
\int_0^1 (1-r)^{q-2+s} |f'(re^{i\theta})|^q dr = \infty.
\]
This together with \(g \in \mathcal{D}_q^{q-2+s} \subseteq \mathcal{H}^\infty \) yields
\[
\int_0^1 (1-r)^{q-2+s} |f'(re^{i\theta})|^q |g(re^{i\theta})|^q dr = \infty
\]
for almost all \(\theta \in \mathbb{R} \) ([9], p. 1878). We obtain a contradiction. This finishes the proof. \(\square \)

References

CONGHUI SHEN
DEPARTMENT OF MATHEMATICS
SHANTOU UNIVERSITY
SHANTOU 515063, P. R. CHINA
Email address: shenconghui2008@163.com