DOI QR코드

DOI QR Code

The Study on The Identification Model of Friend or Foe on Helicopter by using Binary Classification with CNN

  • Kim, Tae Wan (Dept. of Mechanical & Systems Engineering, Korea Military Academy) ;
  • Kim, Jong Hwan (Dept. of Mechanical & Systems Engineering, Korea Military Academy) ;
  • Moon, Ho Seok (Dept. of Defense Science, Korea National Defense University)
  • Received : 2019.12.10
  • Accepted : 2020.02.14
  • Published : 2020.03.31

Abstract

There has been difficulties in identifying objects by relying on the naked eye in various surveillance systems. There is a growing need for automated surveillance systems to replace soldiers in the field of military surveillance operations. Even though the object detection technology is developing rapidly in the civilian domain, but the research applied to the military is insufficient due to a lack of data and interest. Thus, in this paper, we applied one of deep learning algorithms, Convolutional Neural Network-based binary classification to develop an autonomous identification model of both friend and foe helicopters (AH-64, Mi-17) among the military weapon systems, and evaluated the model performance by considering accuracy, precision, recall and F-measure. As the result, the identification model demonstrates 97.8%, 97.3%, 98.5%, and 97.8 for accuracy, precision, recall and F-measure, respectively. In addition, we analyzed the feature map on convolution layers of the identification model in order to check which area of imagery is highly weighted. In general, rotary shaft of rotating wing, wheels, and air-intake on both of ally and foe helicopters played a major role in the performance of the identification model. This is the first study to attempt to classify images of helicopters among military weapons systems using CNN, and the model proposed in this study shows higher accuracy than the existing classification model for other weapons systems.

각종 감시체계에서 육안에 의존하여 물체를 식별해내는 것은 어렵고 실수하기 쉬우므로 군 감시체계에서 자동식별능력의 필요성은 더욱 높아지고 있다. 사회에 발표되는 모형들은 군 무기체계에 대한 데이터가 반영되지 않아 군에 바로 적용하는 것은 제한된다. 본 연구는 군용 헬기의 이미지에 합성곱 신경망을 적용하여 피아식별 모형을 구축한 연구이다. 제안하는 모형은 우리나라에서 주로 사용하고 있는 헬기인 AH-64 기종과 공산권 국가에서 주로 사용하고 있는 헬기인 Mi-17 기종의 이미지를 통해 학습시켜 구축되었다. 제안하는 모형의 성능을 살펴보면, 평가척도를 이용하여 평가한 결과 97.8%의 정확도, 97.3%의 정밀도, 98.5% 재현율과 97.9%의 F-measure의 성능을 보임을 확인하였다. 이런 분류 결과에 대해서 Feature-map을 통해 아군 헬기의 바퀴와 무장, 그리고 흡기구 주변이, 적군 헬기의 바퀴, 흡기구, 그리고 창문 부위가 피아식별 모형의 분류 기준임을 확인할 수 있었다. 본 연구는 CNN을 이용하여 군 무기체계 중 헬기의 영상정보에 대한 피아식별에 대한 분류를 처음으로 시도한 연구이며, 본 연구에서 제안하는 모형은 기존의 다른 무기체계에 대한 분류 모형보다 높은 정확도를 보인다.

Keywords

References

  1. Wikipedia, https://en.wikipedia.org/wiki/Binary_classification
  2. Yann LeCun et al., "Backpropagation Applied to Handwritten Zip Code Recognition," Neural Computation(MIT), 1, pp. 541-551, SEP. 1989. https://doi.org/10.1162/neco.1989.1.4.541
  3. Jordi Torres, "First Contact with Tensorflow(Haeseon Park, Trans.)," Hanbit Media, Inc., p. 117, 2016.
  4. http://physics2.mju.ac.kr/juhapruwp/?p=1517
  5. Yann LeCun et al., "Gradient-Based Learning Applied to Documnet Recognition," PROC. OF THE IEEE, NOV. 1998.
  6. Saurabh Kapur, "Computer Vision with Python 3(Jeongjung Kim, Trans.)," Acorn, p. 137, 2018.
  7. https://untitledtblog.tistory.com/150
  8. Saito Goki, "Deep Learning from Scratch(Bokyeon Lee, Trans.)," Hanbit Media, Inc., p. 229, 2017.
  9. Yann LeCun et al., "Backpropagation Applied to Handwritten Zip Code Recognition," Neural Computation(MIT), 1, pp. 541-551, SEP. 1989. https://doi.org/10.1162/neco.1989.1.4.541
  10. Yann LeCun et al., "Gradient-Based Learning Applied to Documnet Recognition," PROC. OF THE IEEE, NOV. 1998.
  11. Olga Russakovsky et al., "ImageNet Large Scale Visual Recognition Challenge", International Journal of Computer Vision, Volume 115, Issue 3, pp. 211-252, DEC. 2015. DOI: 10.1007/s11263-015-0816-y
  12. W. Jeong, K. Lim, J. Kim, J. Park, and Y. Jo, "Automatic quality inspection system with image processing method", Journal of The Korea Institute Of Industrial Engineers, pp. 163-166, Oct. 1996.
  13. D. Kim, J. Seok, and K. Bae, "Active Sonar Target/Non-target Classification using Convolutional Neural Networks", Journal of Korea Multimedia Society vol. 21, No. 9, pp. 1062-1067, Sep. 2018 https://doi.org/10.9717/kmms.2018.21.9.1062
  14. D. Lee, E. Cho, and D. Lee, "Evaluation of Building Detection from Aerial Images Using Region-based Convolutional Neural Network for Deep Learning", Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography 36(6), pp. 469-481, Dec. 2018 https://doi.org/10.7848/KSGPC.2018.36.6.469
  15. J. Kim, C. Jung, and M. Heo, "Auto Battle Tank Detection and Aiming Point Search Using Imagery", Journal Of The Korea Society For Simulation(JKSS), Vol. 27, No. 2, pp. 1-10, JUN. 2018. DOI: 10.9709/JKSS.2018.27.2.001
  16. M. Sim, Y. Park, and J. Kim, "CNN based US and Chinese Main Tank Identification System", Excerpt Collection of 11th International Army Modeling & Simulation Education Conference, pp. 162-163, Deajeon, South Korea, NOV. 2018.
  17. H. Choi, S. Park, and J. Kim, "Main Tank Identification System for South and North Korea using Convolutional Neural Network", Excerpt Collection of 11th International Army Modeling & Simulation Education Conference, pp. 182-183, Deajeon, South Korea, NOV. 2018.