DOI QR코드

DOI QR Code

AI Technology Analysis using Partial Least Square Regression

  • Choi, JunHyeog (Dept. of Health Administration, Kimpo College) ;
  • Jun, Sunghae (Dept. of Big Data and Statistics, Cheongju University)
  • Received : 2019.11.29
  • Accepted : 2020.02.25
  • Published : 2020.03.31

Abstract

In this paper, we propose an artificial intelligence(AI) technology analysis using partial least square(PLS) regression model. AI technology is now affecting most areas of our society. So, it is necessary to understand this technology. To analyze the AI technology, we collect the patent documents related to AI from the patent databases in the world. We extract AI technology keywords from the patent documents by text mining techniques. In addition, we analyze the AI keyword data by PLS regression model. This regression model is based on the technique of partial least squares used in the advanced analyses such as bioinformatics, social science, and engineering. To show the performance of our proposed method, we make experiments using AI patent documents, and we illustrate how our research can be applied to real problems. This paper is applicable not only to AI technology but also to other technological fields. This also contributes to understanding other various technologies by PLS regression analysis.

본 논문에서는 부분 최소 제곱(PLS) 회귀 모형을 이용한 인공지능(AI) 기술 분석을 제안한다. AI 기술은 이제 우리 사회의 대부분의 영역에 영향을 미치고 있다. 따라서 이 기술에 대한 정확한 이해가 필요하게 된다. AI 기술을 분석하기 위하여 전 세계 특허 데이터베이스로부터 AI 관련 특허 문서를 수집하고 텍스트 마이닝 기법을 사용하여 수집된 특허 문서에서 AI 기술 키워드를 추출한다. 본 연구에서는 추출된 AI 키워드 데이터를 PLS 회귀 모형으로 분석한다. 바이오정보학, 사회과학 및 공학 등 다양한 분야에서 고급 데이터 분석을 위하여 사용되는 PLS 회귀 모형은 부분 최소 제곱 기법을 기반으로 한다. 제안 방법의 성능을 확인하기 위하여 AI 특허 문서를 사용하여 분석 실험을 수행하고 제안하는 연구가 실제 문제에 어떻게 적용될 수 있는지 보여 준다. 본 논문은 AI 기술뿐만 아니라 다른 기술 분야에도 적용 할 수 있다.

Keywords

References

  1. A. T. Roper, S. W. Cunningham, A. L. Porter, T. W. Mason, F. A. Rossini, and J. Banks, "Forecasting and Management of Technology" Hoboken, NJ, John Wiley & Sons, 2011.
  2. S. Y. Lee, H. M. Kim, S. H. Lee, J. H. Ha, and S. L. Lee, "AI Chatbot Providing Real-Time Public Transportation and Route Information," Journal of The Korea Society of Computer and Information, Vol. 24 No. 7, pp. 9-17, July 2019. https://doi.org/10.9708/JKSCI.2019.24.07.009
  3. J. Jung, and J. Ahn, "Intelligent User Pattern Recognition based on Vision, Audio and Activity for Abnormal Event Detections of Single Households," Journal of The Korea Society of Computer and Information, Vol. 24 No. 5, pp. 59-66, May 2019. https://doi.org/10.9708/JKSCI.2019.24.05.059
  4. S. Choi, T. P. Le, and T. Chung, "Controller Learning Method of Self-driving Bicycle Using State-of-the-art Deep Reinforcement Learning Algorithms," Journal of The Korea Society of Computer and Information, Vol. 23 No. 10, pp. 23-31, October 2018. https://doi.org/10.9708/JKSCI.2018.23.10.023
  5. J. Choi, "Technology Trends for Motion Synthesis and Control of 3D Character," Journal of The Korea Society of Computer and Information, Vol. 24 No. 4, pp. 19-26, April 2019. https://doi.org/10.9708/JKSCI.2019.24.04.019
  6. S. Russell, and P. Norvig, "Artificial Intelligence: A Modern Approach, Third Edition" Essex, UK: Pearson, 2014.
  7. K. P. Murphy, "Machine Learning: a probabilistic perspective" Cambridge MA, MIT Press, 2012.
  8. S. Theodoridis, "Machine Learning A Bayesian and Optimization Perspective" London UK, Elsevier, 2015.
  9. M. G. Gustafsson, "A Probabilistic Derivation of the Partial Least-Squares Algorithm," Journal of Chemical Information and Computer Sciences, 41(2), 288-294, February 2001. https://doi.org/10.1021/ci0003909
  10. L. Sun, S. Ji, S. Yu, and J. Ye, "On the Equivalence Between Canonical Correlation Analysis and Orthonormalized Partial Least Squares," Proceedings of the 21st international joint conference on Artifical intelligence, pp. 1230-1235, 2009.
  11. M. Barker and W. Rayens, "Partial least squares for discrimination," Journal of Chemometrics, Vol. 17, No. 3, pp. 166-173, March 2003. https://doi.org/10.1002/cem.785
  12. S. M. Ross, "Introductory Statistics, Fourth Edition" London, UK, Academic Press Elsevier, 2017.
  13. J. Keller, and H. A. V. D. Gracht, "The influence of information and communication technology (ICT) on future foresight processes-Results from a Delphi survey," Technological Forecasting and Social Change, Vol. 85, pp. 81-92, June 2014. https://doi.org/10.1016/j.techfore.2013.07.010
  14. H. A. Linstone, and M. Turoff, "Delphi: A Brief Look Backward and Forward," Technological Forecasting and Social Change, Vol. 78, Iss. 9, pp. 1712-1719, November 2011. https://doi.org/10.1016/j.techfore.2010.09.011
  15. S. Jun, S. J. Lee, J. B. Ryu, and S. Park, "A novel method of IP R&D using patent analysis and expert survey," Queen Mary Journal of Intellectual Property, Vol. 5, No. 4, pp. 474-494, October 2015. https://doi.org/10.4337/qmjip.2015.04.06
  16. S. Park, and S. Jun, "Technology Analysis of Global Smart Light Emitting Diode (LED) Development Using Patent Data," Sustainability, Vol. 9, Iss. 8, pp. 1363, August 2017, https://doi.org/10.3390/su9081363
  17. J. Kim, B. Sun, and S. Jun, "Sustainable Technology Analysis Using Data Envelopment Analysis and State Space Models," Sustainability, Vol. 11, Iss. 13, pp. 3597, June 2019. https://doi.org/10.3390/su11133597
  18. J. Kim, N. Kim, Y. Jung, and S. Jun, "Patent data analysis using functional count data model," Soft Computing, Vol. 23, Iss. 18, pp. 8815-8826, September 2019. https://doi.org/10.1007/s00500-018-3481-6
  19. S. Jun, "Bayesian Count Data Modeling for Finding Technological Sustainability," Sustainability, Vol. 10, No. 9, pp. 3220, September 2018. https://doi.org/10.3390/su10093220
  20. R. Rosipal, and N. Kramer, "Overview and recent advances in partial least squares," Proceedings of International Statistical and Optimization Perspectives Workshop, pp. 34-51, 2005.
  21. USPTO, The United States Patent and Trademark Office, http://www.uspto.gov, 2019.
  22. WIPSON, WIPS Corporation'. http://www.wipson.com, http://global.wipscorp.com, 2019.
  23. R Development Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org, 2019.
  24. I. Feinerer, K. Hornik, and D. Meyer, "Text mining infrastructure in R," Journal of Statistical Software, Vol. 25, No. 5, pp. 1-54, March 2008.
  25. I. Feinerer, and K. Hornik, Package 'tm' Ver. 0.7-6, Text Mining Package, CRAN of R project, 2019.