DOI QR코드

DOI QR Code

Determining proper threshold levels for hydrological drought analysis based on independent tests

수문학적 가뭄 특성 분석을 위한 독립성 검정 기반의 적정 임계수준 결정

  • Kim, Tae-Woong (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Park, Ji Yeon (Department of Civil and Environmental System Engineering, Hanyang University) ;
  • Shin, Ji Yae (Department of Civil and Environmental Engineering, Hanyang University)
  • 김태웅 (한양대학교(ERICA) 건설환경공학과) ;
  • 박지연 (한양대학교 대학원 건설환경시스템공학과) ;
  • 신지예 (한양대학교(ERICA) 건설환경공학과)
  • Received : 2020.02.12
  • Accepted : 2020.03.07
  • Published : 2020.03.31

Abstract

Hydrological drought is directly associated with lack of available water in rivers, reservoirs, and groundwater. It is important to analyze hydrological drought for efficient water resource management because most of rainfall is concentrated in wet seasons and water supply is highly dependent on dams and reservoirs in South Korea. Generally, a threshold level method is useful for defining hydrological droughts. However, this method causes interdependent problems between drought events which result in skewed results in further statistical analysis. Therefore, it is necessary to determine a proper threshold level to represent regional drought characteristics. In this study, applying 50~99 percentiles of daily flow-duration curve, hydrological drought events were extracted, and independence tests were conducted for 12 watersheds. The Poisson independence test showed that 87~99 percentiles were available for most stations except for Yeoju and Pyeongtaek. The generalized Pareto independence test showed that 80~90 percentiles were the most common. Mean excess plot showed that 80 ~ 90 percentiles were the most common. Therefore, the common ranges of the three independent tests were determined for each station and proper threshold levels were recommended for large river basins; 70~76 percentiles for the Han River basin, 87~91 percentiles for the Nakdong River basin, 86~98 percentiles for the Geum River basin, and 85~87 percentiles for the Youngsan and Seomjin River basin.

수문학적 가뭄은 하천, 저수지, 지하수 등과 같은 가용 수자원의 부족과 직접적으로 연관되어 있어 가뭄에 대한 체감이 기상학적 가뭄에 비하여 크다. 특히, 우리나라의 경우 홍수기에 집중되는 강우 특성으로, 비홍수기에는 댐과 저수지의 저류량에 크게 의존하여 수자원 관리가 이루어지므로 효율적인 수자원 관리를 위해서는 수문학적 가뭄을 분석하는 것이 중요하다. 일반적으로 수문학적 가뭄은 정상보다 낮은 유량이 발생하는 것으로 정의된다. 대부분 수문학적 가뭄을 정량적으로 표현하기 위해 주로 임계수준방법(threshold level method)을 많이 사용한다. 그러나 임계수준방법은 작은 미소가뭄으로 인한 독립성 문제를 야기시킬 수 있다. 본 연구에서는 홍수통제소에서 제공하는 12개 지점의 유량자료를 활용하여 독립성 검정을 실시한 후, 우리나라의 수문학적 가뭄 특성 분석을 위한 적정 임계수준을 제시하였다. 일별 유황곡선을 작성하고 50 ~ 99 백분위수를 적용하여 가뭄사상을 추출하였다. 적정 임계수준 범위를 결정하기 위해 독립성 검정을 실시하였다. 포아송 분포의 독립성 검정결과, 여주시 지점과 평택시 지점을 제외하고 대부분 지점들은 87~99 백분위수 구간이 적정한 것을 나타났으며, 일반 파레토 분포의 독립성 검정결과, 80~90 백분위수 사이가 가장 적절하였으며, 평균 초과도표에서는 80 ~90 백분위수 구간이 가장 많이 나타났다. 본 연구에서는 각 권역별로 적정 임계수준을 제시하기 위하여 권역에 해당하는 지역들의 공통범위를 검토하였다. 그 결과, 한강권역에서는 70~76 백분위수, 낙동강권역은 87~91 백분위수, 금강권역에서는 86~98 백분위수, 영산 및 섬진강권역에서 85~87 백분위수 구간이 적정한 임계수준인 것으로 나타났다.

Keywords

References

  1. Abaurrea, J., and Cebrian, A.C. (2002). "Drought analysis based on a cluster Poisson model: distribution of the most severe drought." Climate Research, Vol. 22, No. 3, pp. 227-235. https://doi.org/10.3354/cr022227
  2. Begueria, S. (2005). "Uncertainties in partial duration series modelling of extremes related to the choice of the threshold value." Journal of Hydrology, Vol. 303, No. 1-4, pp. 215-230. https://doi.org/10.1016/j.jhydrol.2004.07.015
  3. Cunnane, C. (1979). "A note on the Poisson assumption in partial duration series models." Water Resources Research, Vol. 15, No. 2, pp. 489-494. https://doi.org/10.1029/WR015i002p00489
  4. Davison, A.C., and Smith, R.L. (1990). "Models for exceedances over high thresholds." Journal of the Royal Statistical Society, Series B, Statistical Methodology, Vol. 52, pp. 393-442.
  5. Ghosh, S., and Resnick, S.I. (2011). "When does the mean excess plot look linear?" Stochastic Models, Vol. 27, No. 4, pp. 705-722. https://doi.org/10.1080/15326349.2011.614198
  6. Hisdal, H., Stahl, K., Tallaksen, L.M., and Demuth, S. (2001). "Have streamflow droughts in Europe become more severe or frequent?" International Journal of Climatology, Vol. 21, No. 3, pp. 317-333. https://doi.org/10.1002/joc.619
  7. Karimi, M., and Shahedi, K. (2013). "Hydrological drought analysis of Karkheh river basin in Iran using variable threshold level method." Current World Environment, Vol. 8, No. 3, pp. 419-428. https://doi.org/10.12944/CWE.8.3.11
  8. Kjeldsen, T.R., Lundorf, A., and Rosbjerg, D. (2000). "Use of two component exponential distribution in partial duration modeling of hydrological droughts in Zimbabwean rivers." Hydrological Sciences Journal, Vol. 45, No. 2, pp. 285-298. https://doi.org/10.1080/02626660009492325
  9. Kim, J.E., Yu, J.S., Lee, J.-H., and Kim, T.-W. (2018). "Drought risk analysis in Seoul using Cheugugi and climate change scenario based rainfall data." Journal of the Korean Society of Civil Engineers, Vol. 38, No. 3, pp. 387-393. https://doi.org/10.12652/KSCE.2018.38.3.0387
  10. Ministry of Land, Infrastructure, and Transport (MLIT) (2011). Drought record and survey report.
  11. Pandey, R.P., Mishra, S.K., Singh, R., and Ramasastri, K.S. (2008). "Streamflow drought severity analysis of Betwa river system (India)." Water Resources Management, Vol. 22, No. 8, pp. 1127-1141. https://doi.org/10.1007/s11269-007-9216-6
  12. Querner, E., and Van Lanen, H.A.J. (2010). "Using SIMGRO for drought analysis-as demonstrated for the Taquari Basin, Brazil." IAHS-AISH Conference, Fez, Morocco, pp. 111-118.
  13. Razmkhah, H. (2016). "Preparing stream flow drought severityduration-frequency curves using threshold level method." Arabian Journal of Geosciences, Vol. 9, No. 7, p. 513. https://doi.org/10.1007/s12517-016-2528-1
  14. Smith, A.D., and Katz, R.W., (2013). "US billion-dollar weather and climate disasters: data sources, trends, accuracy and biases." Natural Hazards, Vol. 67, pp. 387-410. https://doi.org/10.1007/s11069-013-0566-5
  15. Sung, J.H., and Chung, E.-S. (2014). "Application of streamflow drought index using threshold level method." Journal of Korean Water Resources Association, Vol. 47, No. 5, pp. 491-500. https://doi.org/10.3741/JKWRA.2014.47.5.491
  16. Tallaksen, L.M., Madsen, H., and Clausen, B. (1997). "On the definition and modeling of streamflow drought duration and deficit volume." Hydrological Sciences Journal, Vol. 42, No. 1, pp. 15-33. https://doi.org/10.1080/02626669709492003
  17. Van Huijgevoort, M.H.J., Hazenberg, P., Van Lanen, H.A.J., and Uijlenhoet, R. (2012). "A generic method for hydrological drought identification across different climate regions." Hydrology and Earth System Sciences, Vol. 16, No. 8, pp. 2437-2451. https://doi.org/10.5194/hess-16-2437-2012
  18. Woo, M.-K., and Tarhule, A. (1994). "Streamflow droughts of Northern Nigerian rivers." Hydrological Sciences Journal, Vol. 39, No. 1, pp. 19-34. https://doi.org/10.1080/02626669409492717
  19. Yu, J.S. (2019). Development of the drought risk assessment framework for nonstationary modeling under changing climate. Ph. D. dissertation, Hanyang University, pp. 11-108.
  20. Yu, J.S., Shin, J.Y., Kown, M.S., and Kim, T.-W. (2017). "Bivariate drought frequency analysis to evaluate water supply capacity of multi-purpose dams." Journal of the Korean Society of Civil Engineers, Vol. 37, No. 1, pp. 231-238. https://doi.org/10.12652/Ksce.2017.37.1.0231
  21. Yu, J.S., Yoo, J.Y., Lee, J.-H., and Kim, T.-W. (2016). "Estimation of drought risk through the bivariate drought frequency analysis using copula functions." Journal of Korean Water Resources Association, Vol. 49, No. 3, pp. 217-225. https://doi.org/10.3741/JKWRA.2016.49.3.217