DOI QR코드

DOI QR Code

Mycorrhizae, mushrooms, and research trends in Korea

균근과 버섯 그리고 국내 연구동향

  • An, Gi-Hong (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Cho, Jae-Han (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Han, Jae-Gu (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA)
  • 안기홍 (농촌진흥청 국립원예특작과학원 인삼특작부 버섯과) ;
  • 조재한 (농촌진흥청 국립원예특작과학원 인삼특작부 버섯과) ;
  • 한재구 (농촌진흥청 국립원예특작과학원 인삼특작부 버섯과)
  • Received : 2020.02.07
  • Accepted : 2020.03.04
  • Published : 2020.03.31

Abstract

Mycorrhiza refers to the association between a plant and a fungus colonizing the cortical tissue of the plant's roots during periods of active plant growth. The benefits afforded by plants from mycorrhizal symbioses can be characterized either agronomically, based on increased growth and yield, or ecologically, based on improved fitness (i.e., reproductive ability). In either case, the benefit accrues primarily because mycorrhizal fungi form a critical linkage between plant roots and the soil. The soilborne or extramatrical hyphae take up nutrients from the soil solution and transport them to the root. This mycorrhizae-mediated mechanism increases the effective absorptive surface area of the plant. There are seven major types of mycorrhizae along with mycoheterotrophy: endomycorrhizae (arbuscular mycorrhizae, AM), ectomycorrhizae (EM), ectendomycorrhizae, monotropoid, arbutoid, orchid, and ericoid. Endomycorrhizal fungi form arbuscules or highly branched structures within root cortical cells, giving rise to arbuscular mycorrhiza, which may produce extensive extramatrical hyphae and significantly increase phosphorus inflow rates in the plants they colonize. Ectomycorrhizal fungi may produce large quantities of hyphae on the root and in the soil; these hyphae play a role in absorption and translocation of inorganic nutrients and water, and also release nutrients from litter layers by producing enzymes involved in mineralization of organic matters. Over 4,000 fungal species, primarily belonging to Basidiomycotina and to a lesser extent Ascomycotina, are able to form ectomycorrhizae. Many of these fungi produce various mushrooms on the forest floor that are traded at a high price. In this paper, we discuss the benefits, nutrient cycles, and artificial cultivation of mycorrhizae in Korea.

균근은 지구상의 육상식물 중 약 90% 이상의 식물들과 연합 또는 공생관계를 유지하고 있다고 알려져 있으며 식물 뿌리 내에 침투하여 토양 중으로 다량의 균사를 뻗어 토양 내의 수분 및 무기양분을 흡수하여 식물에게 제공하는 대신 식물로부터 광합성 산물인 탄수화물을 얻어 살기 때문에 이론적으로 기주식물 없이는 배양이나 생육이 불가능한 절대 생물영양성이다. 균근의 종류는 기후대, 위도와 고도, 우점하는 식생 등에 따라 여러 가지 종류가 있으며 크게 내생균근과 외생균근으로 나뉜다. 균근은 일반적으로 절대적 공생이라 할 수 있으나, 일부의 외생균근은 식물의 잔해, 낙엽층 등으로부터 유기물을 분해하여 탄소원을 자체 공급할 수 있기 때문에 임의적 공생의 가능성도 제시되고 있다. 이처럼 식물로부터 획득한 탄소의 토양으로의 흐름은 균근에 의하여 중재되어지며 생태계에서 탄소순환의 중요한 기능을 수행한다. 외생균근과 수지상 내생균근은 뿌리의 표면적을 넓히거나 토양 중에 다량의 균사를 뻗음으로서 뿌리 단독으로 흡수할 수 없는 양분고갈지역 바깥의 무기양분 등을 흡수하여 식물에게 제공한다. 또한 균근은 다양한 근권 미생물들과 상호작용을 통하여 식물에게 긍정적인 영향을 미친다. 일부의 토양미생물은 균근의 발아, 생육, 군집구조 등에 관여하여 식물과의 공생관계에 직간접적으로 영향을 미치기도 하며, 더 나아가 양분의 흡수, 식물 뿌리의 성장, 식물병원균 억제효과를 나타내어 식물의 생육을 촉진시키기도 한다. 이와 같이 균근균권 및 근권 토양 내의 다양한 미생물들과 균근과의 상호관계와 그 기능에 대해서 많은 연구들이 진행되어왔으나 아직까지도 밝혀지지 않은 부분들이 많으며 앞으로도 꾸준히 연구가 진행될 것으로 사료된다. 외생균근은 균근성 버섯으로 더 잘 알려져 있으며, 이 균류는 수목과 공생하며 버섯의 자실체를 발생시키며 송이, 능이와 같은 고가의 버섯을 생산하는 귀중한 산림 소득원이다. 국내 균근성 버섯의 연구는 주로 송이 인공재배 연구에 집중되어 있으며 현재까지 송이를 인공적으로 발생시킬 수 있는 방법은 송이감염묘와 송이접종묘를 이용하는 것이다. 그 이외에도 소나무 유묘의 생장력을 증대시키기 위한 우수 송이균주 선발, 송이 균사생장 조건 및 배양특성, 송이균의 탄소원 이용특성, 송이균환 또는 송이 발생 토양의 균류와 박테리아의 군집구조 분석을 통한 송이균환 및 자실체 발생에 영향을 미치는 토양미생물과 연합의 가능성에 대한 연구들이 활발히 수행되고 있다. 아직까지 균근성 버섯에 대한 인공재배기술이 완전하게 개발되지 않은 상태이지만 여러 우수한 연구자들의 꾸준한 노력이 계속적으로 이어지고 있다. 앞으로도 지속적으로 변화하는 국내 기후환경에 발맞추어 야생 균근성 버섯에 대한 생태를 이해하고 꾸준한 연구와 인공재배 기술 개발 시도가 계속 이루어진다면 지금까지 재배가 불가능하였던 균근성 버섯의 인공재배가 성공할 날도 멀지 않으리라 사료된다.

Keywords

References

  1. Agerer R. 2006. Fungal relationships and structural identity of their ectomycorrhizae. Mycol Progress 5: 67-107. https://doi.org/10.1007/s11557-006-0505-x
  2. Alexander IJ. 2006. Ectomycorrhiza-out of Africa? New Phytol 172: 589-591. https://doi.org/10.1111/j.1469-8137.2006.01930.x
  3. Antibus RK, Bower D, Dighton J. 1997. Root surface phosphatase activities and uptake of $^{32}P$-labelledinositolphosphateinfieldcollectedgraybirchandredmapleroots. Mycorrhiza 7: 39-46. https://doi.org/10.1007/s005720050161
  4. Artursson V, Finlay RD, Jansson J. 2006. Interaction between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8: 1-10. https://doi.org/10.1111/j.1462-2920.2005.00942.x
  5. Averill C, Turner BL, Finzi AC. 2014. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505: 543-545. https://doi.org/10.1038/nature12901
  6. Barea JM, Azcon r, Azcon-Aguilar C. 2002. Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek 81: 343-351. https://doi.org/10.1023/A:1020588701325
  7. Bonfante P, Genre A. 2010. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nature Commun 1: 48. https://doi.org/10.1038/ncomms1046
  8. Brundrett MC. 2009. Mycorrhizal associations and other means of nutrition of vascular plant: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320: 37-77. https://doi.org/10.1007/s11104-008-9877-9
  9. Budi SW, van Tuinen D, martinotti G, Gianinazzi S. 1999. Isolation from the Sorghum bicolor mycorrhizosphere of bacterium compatible with arbuscular mycorrhiza development and antagonistic towards soilborne fungal pathogens. Appl Environ Microbiol 65: 5148-5150. https://doi.org/10.1128/AEM.65.11.5148-5150.1999
  10. Chalot M, Brun A. 1998. Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbiol Rev 22: 21-44. https://doi.org/10.1111/j.1574-6976.1998.tb00359.x
  11. Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD. 2013. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339: 1615-1618. https://doi.org/10.1126/science.1231923
  12. Cusano AM, Burlinson P, Deveau A, Vion P, Uroz S, Preston GM. 2011. Pseudomonas fluorescens BBc6R8 type III secretion mutants no longer promote ectomycorrhizal symbiosis. Environ Microbiol Rep 3: 203-210. https://doi.org/10.1111/j.1758-2229.2010.00209.x
  13. Desiro A, Duckett JG, Pressel S, Villarreal JC, Bidartondo MI. 2013. Fungal symbioses in hornworts: a chequered history. Pro R Soc Biol Sci 280: 20130207. https://doi.org/10.1098/rspb.2013.0207
  14. Deveau A, Palin B, Delaruelle C, Peter M, Kohler A, Pierrat JC. 2007. The mycorrhiza helper Pseudomonas fluorescens BBc6R8 has a specific priming effect on the growth, morphology and gene expression of the ectomycorrhizal fungus Laccaria bicolor S238N. New Phytol 175: 743-755. https://doi.org/10.1111/j.1469-8137.2007.02148.x
  15. Egerton-Warburton L, Allen MF. 2001. Endo-and ectomycorrhizas in Quercus agrifolia Nee. (Fagaceae): patterns of root colonization and effects on seedling growth. Mycorrhiza 11: 283-290. https://doi.org/10.1007/s005720100134
  16. Eto S. 1990. Cultivation of the pine seedlings infected with Tricholoma matsutake by use of in vitro mycorrhizal synthesis. Bull Hiroshima For Exp Stn 24: 1-6.
  17. Frey-Klett P, Garbaye J, Tarkka M. 2007. The mycorrhiza helper bacteria revisited. New Phytol 176. 22-36. https://doi.org/10.1111/j.1469-8137.2007.02191.x
  18. Frey-Klett P, Pierrat JC, Garbaye J. 1997. Location and survival of mycorrhiza helper Pseudomonas fluorescens during establishment of ectomycorrhizal symbiosis between Laccaria bicolor and Douglas fir. Appl Environ Microbiol 63: 139-144. https://doi.org/10.1128/AEM.63.1.139-144.1997
  19. Finlay RD. 2008. Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot 59: 1115-1126. https://doi.org/10.1093/jxb/ern059
  20. Fox TR, Comerford NB, McFee WW. 1990. Kinetics of phosphorus release from spodosols: effects of oxalate and formate. Soil Sci Soc Am J 54: 1441-1447. https://doi.org/10.2136/sssaj1990.03615995005400050038x
  21. Gamalero E, Martinotti MG, Trotta A, Lemanceau P, Berta G. 2004. Morphogenetic modifications induced by Pseudomonas fluorescens A6RI and Glomus mosseae BEG12 in the root system of tomato differ according to plant growth conditions. New Phytol 155: 293-300. https://doi.org/10.1046/j.1469-8137.2002.00460.x
  22. Garbaye J. 1994. Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128: 197-210. https://doi.org/10.1111/j.1469-8137.1994.tb04003.x
  23. Grelet GA, Johnson D, Paterson E, Anderson IC, Alexander IJ. 2009. Reciprocal carbon and nitrogen transfer between an ericaceous dwarf shrub and fungi isolated from Piceirhiza bicolorata ectomycorrhizas. New Phytol 182: 359-366. https://doi.org/10.1111/j.1469-8137.2009.02813.x
  24. Heckman DS, Geiser DM, Eidell BR, Stauffer Rl, Kardos NL, Hedges SB. 2001. Molecular evidence for the early colonization of land by fungi and plants. Science 293: 1129-1133. https://doi.org/10.1126/science.1061457
  25. van der Heijden MGA, Martin FM, Selosse MA, Sanders IR. 2015. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 142-06-1423.
  26. Hrynkiewicz K, Baum C, Niedojadlo J, Dahm H. 2009. Promotion of mycorrhiza formation and growth of willows by the bacterial strain Sphingomonas sp. 23L on fly ash. Bio Fer Soils 45: 385-394. https://doi.org/10.1007/s00374-008-0346-7
  27. Jakobsen I, Rosendahl L. 1990. Carbon flow into soil and external hyphal from roots of mycorrhizal cucumber plants. New Phytol 115: 77-83. https://doi.org/10.1111/j.1469-8137.1990.tb00924.x
  28. Jeon SM, Ka KH. 2016. Korean Tricholoma matsutake strains that promote mycorrhization and growth of Pinus densiflora seed. Kor J Mycol 44: 155-165. https://doi.org/10.4489/KJM.2016.44.3.155
  29. Jeon SM, Ka KH. 2015. Morphological and cultural characteristics of ectomycorrhizal mushrooms. Korea Forest Research Institute Research Report 15-13.
  30. Jeon SM, Jeon HS, Ka KH. 2014. Mycelial growth of ectomycorrhizal fungi by different carbon sources in liquid culture. Kor J Mycol 42: 150-158. https://doi.org/10.4489/KJM.2014.42.2.150
  31. Johnson D, Leake JR, Ostle N, Ineson P, Read DJ. 2002. In situ $CO_2\;^{13}C$ pulse labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. New Phytol 153: 327-334. https://doi.org/10.1046/j.0028-646X.2001.00316.x
  32. Ka KH, Kim HS, Jeon SM, Ryoo R, Jang YS, Wang EJ, Jeong YS. 2017. Determination of the minimum size of seedlings with matsutake mycelia that can survive in the field for matsutakeinfected Pine tree production. Kor J Mycol 45: 188-195. https://doi.org/10.4489/KJM.20170023
  33. Ka KH, Jeon SM, Ryoo R, Bak WC, Kang JA, Kim MS, Jeon HS, Jeong YS. 2014. Basic culture characteristics of ectomycorrhizal mushrooms. Korea Forest Research Institute vol. 575.
  34. Ka KH, Park H, Bak WC, Kim HS, Hur TC, Yoon KH, Ryu SR, Lee BH, Koo CD, Lee SI. Kim DI, Han TW. 2010. Artificial production of pine mushroom using transplanted pine trees infected by Tricholoma matsutake. Seoul: Korea Forest Research Institute.
  35. Ka KH, Park H, Hur TC, Bak WC. 2008. Selection of ectomycorrhizal isolates of Tricholoma matsutake and T. magnivelare for inoculation on seedling of Pinus densiflora in vitro. Kor J Mycol 36: 148-152. https://doi.org/10.4489/KJM.2008.36.2.148
  36. Ka KH, Hur TC, Park H, Kim HS, Bak WC, Yoon KH. 2006. Production and transplanting of ectomycorrhizal pine seedlings using the old fairy ring of Tricholoma matsutake. Jour Korean For Soc 95: 636-642.
  37. Kareki K. 1980. Cultivation of the pine sampling infected with Tricholoma matsutake (Ito et Imai) Sing. Utilizing the mesh pot (1). Bull Hiroshima For Exp Stn 15: 49-64.
  38. Karwa A, Varma A, Rai M. 2011. Edible ectomycorrhizal fungi: cultivation, conservation and challenges. p. 429-453. Diversity and Biotechnology of Ectomycorrhizae. Eds. Rai M, Varma A. Springer.
  39. Kim IY, Jung GR, Han SK, Cha JY, Sung JM. Favorable condition for mycelial growth of Tricholoma matsutake. Kor J Mycol 33: 22-29. https://doi.org/10.4489/KJM.2005.33.1.022
  40. Kim MA, Yoon HJ, You YH, Kim YE, Woo JR, Seo YG, Lee GM, Kim YJ, Kong WS, Kim JG. 2013. Metagenomic analysis of fungal communities inhabiting the fairy ring zone of Tricholoma matsutake. J Microbiol Biotechnol 23: 1347-1356. https://doi.org/10.4014/jmb1306.06068
  41. Kivlin SN, Hawker CV, Treseder KK. 2011. Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol Bioch 43: 2294-2303. https://doi.org/10.1016/j.soilbio.2011.07.012
  42. Landeweert R, Hoffland E, Finlay RD, Kuyper TW, van Breemen N. 2001. Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16: 248-254. https://doi.org/10.1016/S0169-5347(01)02122-X
  43. Linderman RG. 1988. Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathology 78: 366-371.
  44. Ligrone R, Carafa A, Lumini E, Bianciotto V, Bonfante P, Duckett JG. 2007. Glomeromycotean associations in liverworts: a molecular cellular and taxonomic analysis. Am J Bot 94: 1756-1777. https://doi.org/10.3732/ajb.94.11.1756
  45. Mortimer PE, Karunarathna SC, Li Q, Gui H, Yang X, Yang X, He J, Ye L, Guo J, Li H, Sysouphanthong P,Zhou D, Xu J, Hyde KD. 2012. Prized edible Asian mushrooms: ecology, conservation and sustainability. Fungal Divers 56: 31-47. https://doi.org/10.1007/s13225-012-0196-3
  46. Morton JB, Benny GL. 1990. Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae. Mycotaxon 37: 471-491.
  47. Nehls U, Göhringer F, Wittulsky S, Dietz S. 2010. Fungal carbohydrate support in the ectomycorrhizal symbiosis: a review. Plant Biol 12: 291-302.
  48. Nottingham AT, Turner BL, Winter K, van der Heijden MGA, Tanner EVJ. 2010. Arbuscular mycorrhizal mycelial respiration in a moist tropical forest. New Phytol 186: 957-967. https://doi.org/10.1111/j.1469-8137.2010.03226.x
  49. Oh SY, Kim MS, Eimes JA, Lim YW. 2018. Effect of fruiting body bacteria on the growth of Tricholoma matsutake and its related molds.PLOS One 13: e0190948 https://doi.org/10.1371/journal.pone.0190948
  50. Oh SY, Fong JJ, Park MS, Lim YW. 2016. Distinctive feature of microbial communities and bacterial functional profiles in Tricholoma matsutake dominant soil. PLOS One 11:e0168573. https://doi.org/10.1371/journal.pone.0168573
  51. Onguene NA, Kuyper TW. 2001. Mycorrhizal associations in the rain forest of South Cameroon. For Ecol Manage 140: 277-287. https://doi.org/10.1016/S0378-1127(00)00322-4
  52. Opik M, Zobel M, Cantero JJ, Davison J, Facelli JM, Hiiesalu I, Jairus T, Kalwij JM, Koorem K, Leal ME. 2013. Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23: 411-430. https://doi.org/10.1007/s00572-013-0482-2
  53. Paul EA, Clark FE. 1996. Soil microbiology and biochemistry. Academic Press, San Diego, CA.
  54. Phillips RP, Brzostek E, Midgley MG. 2013. The mycorrhizalassociated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests. New Phytol 199: 41-51. https://doi.org/10.1111/nph.12221
  55. Read DJ, Perez-Moreno J. 2003. Mycorrhizas and nutrient cycling in ecosystems-a journey towards relevance? New Phytol 157: 475-492. https://doi.org/10.1046/j.1469-8137.2003.00704.x
  56. Read DJ, Duckett JG, Francis R, Ligrone R, Russell A. 2000. Symbiotic fungal associations in ‘lower’ land plants. Philos Trans R Soc Lond B Biol Sci 355: 815-830. https://doi.org/10.1098/rstb.2000.0617
  57. Read DJ, Lewis DH, Fitter AH, Alexnader IJ. 1992. Mycorrhizas in ecosystems. CAB International, Wallingford, England.
  58. Redecker D, Kodner R, Graham LE. 2000. Glomalean fungi from the Ordovician. Science 289: 1920-1921. https://doi.org/10.1126/science.289.5486.1920
  59. Rinaldi AC, Comandini O, Kuyper TW. 2008. Ectomycorrhizal fungal diversity: separating the wheat from the chaff. Fungal Divers 33: 1-45.
  60. SchuBler A, Schwarzott D, Walker C. 2001. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105: 1413-1421. https://doi.org/10.1017/S0953756201005196
  61. Smith SE, Read DJ. 1997. Mycorrhizal symbiosis, 2ndedn. London, UK: Academic Press.
  62. Strullu-Derrien C, Selosse MA, Kenrick P, Martin FM. 2018. The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. New Phyl 220: 1012-1030. https://doi.org/10.1111/nph.15076
  63. Strullu-Derrien C, Kenrick P, Pressel S, Duckett JG, Riout JP, Strullu DG. 2014. Fungal associations in Horneophyton ligneri from the Rhynie Chert (c. 407 Ma) closely resemble those in extant lower land plants: novel insights into ancesral plantfungus symbioses. New Phytol 203: 964-979. https://doi.org/10.1111/nph.12805
  64. Taylor AFS, Alexander I. 2005. The ectomycorrhizal symbiosis: life in the real world. Mycologist 19: 102-112. https://doi.org/10.1017/S0269-915X(05)00303-4
  65. Taylor DL, Bruns TD. 1997. Independent, specialized invasions of ectomycorrhizal mutualism by two nonphotosynthetic orchids. Proc Natl Acad Sci USA 94: 4510-4515. https://doi.org/10.1073/pnas.94.9.4510
  66. Tedersoo L, Brundrett M. 2017. Evolution of ectomycorrhizal symbiosis in plants. Ecol Stud 230: 407-467. https://doi.org/10.1007/978-3-319-56363-3_19
  67. Tedersoo L, May TW, Smith ME. 2010. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20: 217-263. https://doi.org/10.1007/s00572-009-0274-x
  68. Timonen S, Marschner P. 2006. Mycorrhizosphere concept. p. 155-172. In Mukerji KG, Manoharachary C, Singh J (ed.) Microbial activity in the rhizophere. Springer-Verlag, Berlin, Germany.
  69. Um AH, Lee YW, Park SH, Choi HS, Lee JY, Ga KH. 2014. Arbuscular mycorrhizal fungi in Korea. Korea Forest Research Institute vol. 576.
  70. Varrio LM, Heinonsalo J, Spetz P, Pennanen T, Heinonen J, Tervahauta A, Fritze H. 2012. The ectomycorrhizal fungus Tricholoma matsutake is a facultative saprotroph in vitro. Mycorrhiza 22: 409-418. https://doi.org/10.1007/s00572-011-0416-9
  71. Vaario LM, Fritze H, Spetz P, Heinonsalo J, Hanajik P, Pennanen T. 2011. Tricholoma matsutake dominates diverse microbial communities in different forest soils. Appl Environ Microbiol 77: 8523-8531. https://doi.org/10.1128/AEM.05839-11
  72. Villarreal-Ruiz L, Anderson IC, Alexander IJ. 2004. Interaction between an isolate from the Hymenoscyphus ericae aggregate and roots of Pinus and Vaccinium. New Phytol 164: 183-192. https://doi.org/10.1111/j.1469-8137.2004.01167.x
  73. Vivas A, Azcon R, Biro B, Barea JM, Ruiz-Lozano JM. 2003. Influence of bacterial strains isolated from lead-polluted soil and their interactions with arbuscular mycorrhizae on the growth of Trifolium pratense L. under lead toxicity. Can J Microbiol 49: 577-588. https://doi.org/10.1139/w03-073
  74. Wallander H. 2000. Uptake of P from apatite by Pinus sylvestris seedlings colonized by different ectomycorrhizal fungi. Plant Soil 218: 249-256. https://doi.org/10.1023/A:1014936217105
  75. Yamamoto K, Endo N, Degawa Y, Fukuda M, Yamada A. 2017. First detection of Endogone ectomycorrhizas in natural oak forests. Mycorrhiza 27: 295-301. https://doi.org/10.1007/s00572-016-0740-1