DOI QR코드

DOI QR Code

Implementation of Capacitor and Inductor Applied LCP Substrate for 35-GHz frequency band

35 GHz 대역을 위한 LCP 기판 적용된 커패시터 및 인덕터 구현

  • Lee, Jiyeon (ICT.Device Packaging Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Ryu, Jongin (ICT.Device Packaging Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Choi, Sehwan (ICT.Device Packaging Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Lee, Jaeyoung (ICT.Device Packaging Research Center, Korea Electronics Technology Institute (KETI))
  • 이지연 (한국전자기술연구원 ICT.디바이스패키징연구센터) ;
  • 유종인 (한국전자기술연구원 ICT.디바이스패키징연구센터) ;
  • 최세환 (한국전자기술연구원 ICT.디바이스패키징연구센터) ;
  • 이재영 (한국전자기술연구원 ICT.디바이스패키징연구센터)
  • Received : 2020.08.24
  • Accepted : 2020.12.22
  • Published : 2020.12.30

Abstract

In this paper, by applying LCP substrate, the capacitor and inductor are implemented with a variety of value that can be used in 35 GHz circuits. Depending on how to apply it to the circuit, it is required high value by designing the basic structures such as electrode capacitor and spiral inductor. However they are not available in high-frequency domain, because their SRF(Self-Resonant Frequency) is lower than the frequency of 35-GHz. By finding the limit, this paper devised classifying passive devices for the DC and the high-frequency domain. The basic structure is suitable for DC and microstrip λ/8 length stub structure can be used for high-frequency. The open and short stub structure operate as a capacitor and inductor respectively in the frequency of 35 GHz. If their impedance is known, it is possible to extract the value through the impedance-related equation. By producing with the permittivity 2.9 LCP substrate, the basic structure which are available in the DC constituted a library of capacitance of 1.12 to 13.9 pF and inductance of 0.96 to 4.69 nH, measured respectively. The stub structure available in the high-frequency domain were built libraries of capacitance of 0.07 to 2.88 pF and inductance of 0.34 to 1.27 nH, calculated respectively. The measurements have proven how to diversify value, so libraries can be built more variously. It is possible to integrate with the operation circuit of TRM(Transmit-Receive Module) for the frequency 35-GHz, it will be an alternative to the passive devices that can be properly utilized in the circuit.

본 논문에서는 LCP(Liquid Crystal Polymer) 기판을 적용하여 35 GHz 대역 회로에서 사용될 수 있는 커패시터 및 인덕터를 다양한 용량으로 구현하였다. 회로에 적용하는 데에 따라 높은 용량을 갖는 수동소자가 필요하고, 이는 기본 구조인 전극형 커패시터와 Spiral 구조 인덕터로 설계할 수 있으나, 이 구조는 SRF(Self-Resonant Frequency)가 사용 주파수인 35 GHz 보다 낮아 고주파 영역에서는 사용 불가능하다. 이러한 주파수 한계를 발견하여, 본 논문에서는 DC와 고주파 영역 사용 수동소자를 분류하여 고안하였다. 기본 구조는 DC와 같은 낮은 주파수 사용에 적합하며, 35 GHz 대역인 고주파용으로는 마이크로스트립 λ/8 길이 stub 구조로 설계하였으며, open 및 short stub 구조는 각각 커패시터 및 인덕터로 동작하고, stub의 임피던스로부터 계산식을 통해 용량 값을 추출할 수 있다. 유전율 2.9인 LCP 기판으로 제작하고 측정하여, DC 사용 기본 구조 커패시터와 인덕터는 각각 1.12 ~ 13.9 pF, 0.96 ~ 4.69 nH 용량의 라이브러리를 구성하였다. 고주파 영역에서 사용 가능한 stub 구조의 커패시터와 인덕터는 각각 0.07 ~ 2.88 pF, 0.34 ~ 1.27 nH 으로 라이브러리를 구축하였다. 측정을 통해 용량 값을 다양화하는 방법을 검증하였으므로 더욱 세분화된 라이브러리를 구축할 수 있으며, 이들은 사용 주파수 35 GHz 대역의 TRM(Transmit-Receive Module)에서 동작 회로와 집적화가 가능하고, 회로에 적절히 활용될 수 있는 수동소자의 대안이 될 것이다.

Keywords

References

  1. D. C. Thompson, M. M. Tentzeris, and J. Papapolymerou, "Packaging of MMICs in Multilayer LCP Substrates", IEEE Microwave and Wireless Components Letters, 16(7), (2006).
  2. K. Brownlee, S. Bhattacharya, K. Shinotani, C. Wong, and R. Tummala, "Liquid Crystal Polymers (LCP) for High Performance SOP Applications", Proc. 8th International Symposium on Advanced Packaging Materials, Stone Mountain, GA, USA, 249, IEEE (2002).
  3. A. Tsuchiya, H. Sugama, T. Sunamoto, N. Hidaka, and O. Hashimoto, "Low-loss and high-speed transmission flexible printed circuits based on liquid crystal polymer films", Electronics Letters 13th, 48(19), 1216 (2012). https://doi.org/10.1049/el.2012.2779
  4. J. Jeong, S. Shin, G. J. Lee, T. M. Gwon, and J. H. Park, "Advancements in Fabrication Process of Microelectrode Array for Retinal Prosthesis using Liquid Crystal Polyemr (LCP)", 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 5295, IEEE (2013).
  5. D. C. Thompson, O. Tantot, H. Jallageas, G. E. Ponchak, M. M. Tentzeris, and J. Papapolymerou, "Characterization of Liquid Crystal Polymer (LCP) Material and Transmission Lines on LCP Substrates From 30 to 100GHz", IEEE Transactions on Microwave Theory and Techniques, 52(4), 1343 (2004). https://doi.org/10.1109/TMTT.2004.825738
  6. J. H. Baeg, H. Park, S. I. Lee, Y. Ha, and Y. R. Cho, "Study on Influencing Factors of Adhesive Strength for Polymer Coating on Metal Adherend by Dolly Test", J. Microelectron. Packag. Soc., 26(2), 1 (2019). https://doi.org/10.6117/KMEPS.2019.26.2.001
  7. A. Kaiser, C. M. Bee, F. Dupuis, R. V. Metzen, and K. Fritz, "Thin Film Based LCP Multi-Layer Circuits: Manufacturing Technology and Characterization", Proc. European Microelectronics Packaging Conference (EMPC), Friedrichshafen, Germany, 1, IEEE (2015).
  8. S. J. Hwang, H. J. Kang, J. O. Kim, and J. P. Jung, "Laser Micro-Joining and Soldering", J. Microelectron. Packag. Soc., 26(3), 7 (2019).
  9. M. V. Schneider, "Microstrip Lines for Microwave Integrated Circuits", Bell System Technical Journal, 48(5), 1421(1969). https://doi.org/10.1002/j.1538-7305.1969.tb04274.x