DOI QR코드

DOI QR Code

Calculation of the TNT Equivalent Mass of the Possible Explosion of CO, CH4, and C2H4

CO와 CH4, C2H4 혼합 가스 폭발에 대한 TNT 등가량 계산

  • 김민주 (인하대학교 에너지자원공학과) ;
  • 권상기 (인하대학교 에너지자원공학과)
  • Received : 2020.01.29
  • Accepted : 2020.02.12
  • Published : 2020.03.31

Abstract

Gas explosion accidents are steadily being issued due to increased gas consumption in Korea and foreign countries. To analyze the effects of these gas explosions, a TNT equivalent method is used. In this study, the TNT equivalent was calculated in the event of an explosion due to the volume content in the air of CO, CH4 and C2H4, the typical flammable gases emitted by coal. Also, the peak overpressure and impulse variation with the distance from explosion point were compared and analyzed by gas using the calculated equivalent value of TNT. The upper limit of the TNT equivalent for the three mixed gases is up to five times larger than the other gases mixture. In addition, the peak overpressure and impulse, which are factors of the TNT characteristic curve, are also increasing as the number of gases increases.

국내외에서 가스 소비량 증가에 따라 가스 폭발 사고가 꾸준히 발행하고 있으며 석탄 저장소 옥내화 대책에 따른 가스 폭발 위험성이 대두되고 있다. 이러한 가스 폭발의 영향을 분석하기 위하여 TNT 등가량 산정법이 사용되고 있다. 본 연구에서는 석탄이 배출하는 가연성 가스인 CO, CH4, C2H4의 공기 내 부피 함량에 따른 폭발사례에 대한 TNT 등가량을 산정하였다. 또한 계산된 TNT 등가량을 이용하여 거리에 따른 최대 압력과 임펄스 변화량을 가스 폭발 사례별로 비교, 분석하였다. 3개 혼합 가스의 TNT 등가량 증가 양상은 C2H4의 공기 중 부피함량에 의존하는 경향을 보이고 있다. 또한 TNT 특성곡선의 인자인 최대 압력과 임펄스도 가스의 개수가 증가함에 따라 그 값이 증가하는 양상을 띠고 있다.

Keywords

References

  1. 권상기, 2017, 폭발파에 의한 폭발압력곡선 경험식에 관한 연구, 화약.발파, Vol. 35, No. 1, pp. 1-17.
  2. 권상기, 박정찬, 2015, 가스폭발에 따른 폭발에너지를 평가하기 위한 TNT 등가량 환산방법에 대한 고찰, 화약.발파, Vol. 33, No. 3, pp. 1-13.
  3. 권상기, 김하영, 2016, 중국 텐진항 폭발사고 원인과 관련된 폭발 에너지 분석, 화약.발파, Vol. 34, No. 1, pp. 1-10.
  4. 김의수, 김종혁, 심종헌, 김진표, 고재모, 박남규, 2015 AUTODYN은 이용한 LNG 폭발 사고 위력 평가에 관한 법공학적 연구, 한국안전학회지, Vol. 30, No. 4, pp. 56-63. https://doi.org/10.14346/JKOSOS.2015.30.4.56
  5. 김현정, 이병훈, 조수경, 이성광, 2017, 화학 양론적 규칙으로 고에너지 물질의 폭발 생성물 조성 결정에 따른 폭발속도 비교분석, 분석과학, Vol. 38, No. 6, pp. 405-410.
  6. 박훈, 2019, 강체 기둥의 단순 해석 모델에서의 폭발하중 비교, 화약.발파, Vol. 37, No.3, pp. 1-12.
  7. 윤용균, 2018, 폭발성 물질의 폭발에 따른 폭발압력 평가, 화약.발파, Vol. 36, No. 4, pp. 26-34.
  8. 최형빈, 김한수, 2015, 구조체에 작용하는 중소규모 혼합가스 폭발해석을 위한 최적 등가 TNT 해석 기법, 대한건축학회 논문집- 구조계, Vol. 31, No. 11, pp. 3-10.
  9. 하동명, 2005, 메탄의 화재 및 폭발위험성 평가, 한국가스학회지, Vol. 9, No. 2, pp. 1-7
  10. 한우섭, 한인수, 최이락, 박상용, 2015, 화학물질의 폭발사고 피해예측 및 적용방안 연구, 안전보건공단 연구보고서, pp. 31-37.
  11. 환경부, 미세먼지 관리 종합계획(2020-2024), 2019. 11. 01, pp. 62-63.
  12. KOSIS(한국가스안전공사, 연료가스 소비량 대비 가스사고 현황), 2019.11.6.
  13. KOSIS(고용노동부, 산업재해현황), 2019. 12. 12.
  14. Addai, E. K., Gabel, D., & Krause, U. (2015). Explosion characteristics of three component hybrid mixtures. Process Safety and Environmental Protection, Vol. 98, pp. 72-81. https://doi.org/10.1016/j.psep.2015.06.013
  15. Amyotte, P. R., and Pegg, M. J., 1993, Explosion hazards in underground coal mines, Toxicological & Environmental Chemistry, Vol. 40(1-4), pp. 189-199. https://doi.org/10.1080/02772249309357943
  16. ASTM - The ASTM computer program for chemical thermodynamic and energy release evaluation CHETAH 7.3, August 2001.
  17. Cooper, P. W., 1994, Comments on TNT equivalence, Sandia National Labs., Albuquerque, NM (United States), No. SAND-94-1614C; CONF-940776-6.
  18. Costa Neto, M. L., & DOZ, G. N., 2017, Study of blast wave overpressures using the computational fluid dynamics, Revista IBRACON de Estruturas e Materiais, Vol. 10, No. 3, pp. 669-677. https://doi.org/10.1590/s1983-41952017000300007
  19. Crowl, W. K., 1969, Structures to Resist the Effects of Accidental Explosions, Technical Manual TM 5-1300., US Army, Navy and Air Force, US Government Printing Office, Washington DC.
  20. Formby, S. A., 1995, Quantification of the air blast characteristics of commercial explosives, Institution of Chemical Engineers Symposium Series, Vol. 139, pp. 147-160.
  21. Jun DENG, Zhenmin LUO, Xiaochun WU, Yaoyuan HU, 2010, Explosive limits of mixed gases containing CH4, CO and C2H4 in the goaf area, Mining Science and Technology (China), Vol. 20, No. 4, pp. 557-562. https://doi.org/10.1016/S1674-5264(09)60243-X
  22. Kingery, C. N., 1966, Air Blast Parameters Versus Scaled Distance for Hemispherical TNT Surface Burst, ARMY BALLISTIC RESEARCH LAB ABERDEEN PROVING GROUND MD, No. BRL Report 1344.
  23. Kinney, G.F., Graham, K.J., 1985. Explosive Shocks in Air. Springer-Verlag, New York, 2nd. ed.
  24. Lea, C. J., and Ledin, H. S., 2002, A Review of the State-of-the-Art in Gas Explosion Modelling, Health and Safety Lab. report, HSL/2002/02.
  25. LOPEZ, E., Rengel, R., Mair, G. W., Isorna, F., 2015, Analysis of high-pressure hydrogen and natural gas cylinders explosions through TNT equivalent method, Iberian symposium on hydrogen, fuel cells and advanced batteries, pp. 5-8.
  26. Pierorazio, A. J., Thomas, J. K., Baker, Q. A., Ketchum, D. E., 2005, An update to the Baker-Strehlow-Tang vapor cloud explosion prediction methodology flame speed table, Process Safety Progress, Vol. 24, No. 1, pp. 59-65. https://doi.org/10.1002/prs.10048
  27. Sochet, I., 2010, Blast effects of external explosions, Eighth International Symposium on Hazards, Prevention, and Mitigation of Industrial Explosions, Japan, Vol. 1.
  28. Sochet, I., Gardebas, D., Calderara, S., Marchal, Y., & Longuet, B., 2011, Blast Wave Parameters for Spherical Explosives Detonation in Free Air, Open Journal of Safety Science and Technology, Vol. 1, No. 2, pp. 31-42. https://doi.org/10.4236/ojsst.2011.12004
  29. Swisdak, M. M., 1994, Simplified Kingery airblast calculation, OMB No. 0704-0188.
  30. Van den Berg, A. C., 1985, The multi-energy method: A framework for vapour cloud explosion blast prediction, Journal of Hazardous Materials, Vol. 12, No. 1, pp. 1-10. https://doi.org/10.1016/0304-3894(85)80022-4
  31. Zabetakis, M. G., Lambiris, S., Scott, G. S., 1958, Flame temperatures of limit mixtures, In Symposium (International) on Combustion, Elsevier, Vol. 7, No. 1, pp. 484-487.