DOI QR코드

DOI QR Code

Failure Mechanism of Cu/PET Flexible Composite Film with Anisotropic Interface Nanostructure

  • Park, Sang Jin (Department of Materials Science and Engineering, Chungnam National University) ;
  • Han, Jun Hyun (Department of Materials Science and Engineering, Chungnam National University)
  • Received : 2020.01.11
  • Accepted : 2020.02.12
  • Published : 2020.03.27

Abstract

Cu/PET composite films are widely used in a variety of wearable electronics. Lifetime of the electronics is determined by adhesion between the Cu film and the PET substrate. The formation of an anisotropic nanostructure on the PET surface by surface modification can enhance Cu/PET interfacial adhesion. The shape and size of the anisotropic nanostructures of the PET surface can be controlled by varying the surface modification conditions. In this work, the effect of Cu/PET interface nanostructures on the failure mechanism of a Cu/PET flexible composite film is studied. From observation of the morphologies of the anisotropic nanostructures on plasma-treated PET surfaces, and cross-sections and surfaces of the fractured specimens, the Cu/PET interface area and nanostructure width are analyzed and the failure mechanism of the Cu/PET film is investigated. It is found that the failure mechanism of the Cu/PET flexible composite film depends on the shape and size of the plasmatreated PET surface nanostructures. Cu/PET interface nanostructures with maximal peel strength exhibit multiple craze-crack propagation behavior, while smaller or larger interface nanostructures exhibit single-path craze-crack propagation behavior.

Keywords

References

  1. S. Yao and Y. Zhu, Adv. Mater., 27, 1480 (2015). https://doi.org/10.1002/adma.201404446
  2. S. Khan, L. Lorenzelli and R. S. Dahiya, IEEE Sens. J., 15, 3164 (2015). https://doi.org/10.1109/JSEN.2014.2375203
  3. Y. S. Rim, S. -H. Bae, H. Chen, N. De Marco and Y. Yang, Adv. Mater., 28, 4415 (2016). https://doi.org/10.1002/adma.201505118
  4. Z. Wang, Z. Li and Y. He, J. Electrochem. Soc., 11, D664 (2011).
  5. W. Zhao and Z. Wang, Int. J. Adhes. Adhes., 41, 50 (2013). https://doi.org/10.1016/j.ijadhadh.2012.10.002
  6. P. -C. Chiang, W. -T. Whang, S. -C. Wu, K. -R. Chuang, Polymer, 45, 4465 (2004). https://doi.org/10.1016/j.polymer.2004.04.024
  7. S. H. Kim, S. H. Cho, N. -E. Lee, H. M. Kim, Y. W. Nam and Y. -H. Kim, Surf. Coat. Technol., 193, 101 (2005). https://doi.org/10.1016/j.surfcoat.2004.08.130
  8. S. J. Park, T. J. Ko, J. Yon, M. W. Moon, K. H. Oh and J. H. Han, Appl. Surf. Sci., 396, 1678 (2017). https://doi.org/10.1016/j.apsusc.2016.12.007
  9. G. A. Shafeev and P. Hoffmann, Appl. Surf. Sci., 139, 455 (1999).
  10. C. A. Chang, J. Baglin, A. G. Schrott and K. C. Lin, Appl. Phys. Lett., 51, 103 (1987). https://doi.org/10.1063/1.98637
  11. K. W. Paik and A. L. Ruoff, J. Adhes. Sci. Technol., 4, 465 (1990). https://doi.org/10.1163/156856190X00432
  12. J. H. Kim, Y. G. Seol and N. -E. Lee, J. Korean Phys. Soc., 51, S819 (2007).
  13. W. Zhao and Z. Wang, Int. J. Adhes. Adhes., 41, 50 (2013). https://doi.org/10.1016/j.ijadhadh.2012.10.002
  14. S. Sawada, Y. Masuda, P. Zhu and K. Koumoto, Langmuir, 22, 332 (2006). https://doi.org/10.1021/la051538r
  15. M. Mas-Torrent and C. Rovira, Chem. Soc. Rev., 37, 827 (2008). https://doi.org/10.1039/b614393h
  16. H. Su, M. Zhang, Y. -H. Chang, P. Zhai, N. Y. Hau, Y. -T. Huang, C. Liu, A. K. Soh and S. -P. Feng, ACS Appl. Mater. Interfaces, 6, 5577 (2014). https://doi.org/10.1021/am406026n
  17. J. Bico, U. Thiele and D. Quere, Colloids Surf., A, 206, 41 (2002). https://doi.org/10.1016/S0927-7757(02)00061-4
  18. S. -J. Park, T. -J. Ko, J. Yoon, M. -W. Moon and J. H. Han, Korean J. Mater. Res., 25, 622 (2015). https://doi.org/10.3740/MRSK.2015.25.11.622
  19. S. J. Park, T. J. Ko, J. Yon, M. W. Moon, K. H. Oh and J. H. Han, Appl. Surf. Sci., 427, 1 (2018).
  20. C. Y. Hui, A. Ruina, C. Creton and E. J. Kramer, Macromolecules, 25, 3948(1992). https://doi.org/10.1021/ma00041a018
  21. R. A. C. Deblieck, D. J. M. Van Beek, K. Remerie and I. M. Ward, Polymer, 52, 2979 (2011). https://doi.org/10.1016/j.polymer.2011.03.055
  22. A. Arkhireyeva and S. Hashemi, J. Mater. Sci., 37, 3675 (2002). https://doi.org/10.1023/A:1016561225281
  23. V. Tanrattanakul, W. G. Perkins, F. L. Massey, A. Moet, A. Hiltner and E. Baer, J. Mater. Sci., 32, 4749 (1997). https://doi.org/10.1023/A:1018678913914
  24. G. C. Pulos and W. G. Knauss, Int. J. Fracture, 93, 161 (1998). https://doi.org/10.1023/A:1007525920089