DOI QR코드

DOI QR Code

Correlation between Microstructure and Mechanical Properties of Base Metal and HAZ of 500 MPa Steel Plates for Offshore Platforms

해양플랜트용 500 MPa급 후판강의 모재 및 HAZ의 미세조직과 기계적 특성의 상관관계

  • Park, Jiwon (School of Materials Science and Engineering, University of Ulsan) ;
  • Cho, Sung Kyu (Technical Research Center, Hyundai Steel Company) ;
  • Cho, Young Wook (Technical Research Center, Hyundai Steel Company) ;
  • Shin, Gunchul (School of Materials Science and Engineering, University of Ulsan) ;
  • Kwon, Yongjai (School of Materials Science and Engineering, University of Ulsan) ;
  • Lee, Jung Gu (School of Materials Science and Engineering, University of Ulsan) ;
  • Shin, Sang Yong (School of Materials Science and Engineering, University of Ulsan)
  • 박지원 (울산대학교 첨단소재공학부) ;
  • 조성규 (현대제철 R&D Center) ;
  • 조영욱 (현대제철 R&D Center) ;
  • 신건철 (울산대학교 첨단소재공학부) ;
  • 권용재 (울산대학교 첨단소재공학부) ;
  • 이정구 (울산대학교 첨단소재공학부) ;
  • 신상용 (울산대학교 첨단소재공학부)
  • Received : 2020.02.05
  • Accepted : 2020.02.20
  • Published : 2020.03.27

Abstract

In this study, two types of thick steel plates are prepared by controlling carbon equivalent and nickel content, and their microstructures are analyzed. Tensile tests, Vickers hardness tests, and Charpy impact tests are conducted to investigate the correlation between microstructure and mechanical properties of the steels. The H steel, which has high carbon equivalent and nickel content, has lower volume fraction of granular bainite (GB) and smaller GB packet size than those of L steel, which has low carbon equivalent and nickel content. However, the volume fraction of secondary phases is higher in the H steel than in the L steel. As a result, the strength of the L steel is higher than that of the H steel, while the Charpy absorbed energy at -40 ℃ is higher than that of the L steel. The heat affected zone (HAZ) simulated H-H specimen has higher volume fraction of acicular ferrite (AF) and lower volume fraction of GB than the HAZ simulated L-H specimen. In addition, the grain size of AF and the packet sizes of GB and BF are smaller in the H-H specimen than in the L-H specimen. For this reason, the Charpy absorbed energy at -20 ℃ is higher for the H-H specimen than for the L-H specimen.

Keywords

References

  1. T. C. Cheng, C. Yu, T. C. Yang, C. Y. Huang, H. C. Lin and R.-K. Shiue, Arch. Metall. Mater., 63, 167 (2018).
  2. D. S. Liu, Q. L. Li and T. Emi, Metall. Mater. Trans. A, 42, 1349 (2011). https://doi.org/10.1007/s11661-010-0458-1
  3. Y. L. Zhou, T. Jia, X. J. Zhang, Z. Y. Liu and R. D. K. Misra, Mater. Sci. Eng., A, 626, 352 (2015). https://doi.org/10.1016/j.msea.2014.12.074
  4. M. Chapa, ISIJ Int., 42, 1288 (2002). https://doi.org/10.2355/isijinternational.42.1288
  5. A. D. Schino, L. Alleva and M. Guagnelli, Mater. Sci. Forum, 860, 715 (2012).
  6. C. Yu, T. C. Yang, C. Y. Huang and R. K. Shiue, Metall. Mater. Trans. A, 47A, 4777 (2016).
  7. S. K. Dhua, D. Mukerjee and D. S. Sarma, Metall. Mater. Trans. A, 32A, 2259 (2001).
  8. B. Hwang, C. G. Lee and S. J. Kim, Metall. Mater. Trans. A, 42A, 717 (2011).
  9. J. Y. Koo, M. J. Luton, N. V. Bangaru, R. A. Petkovic, D. P. Fairchild, C. W. Petersen, H. Asahi, T. Hara, Y. Terada, M. Sugiyama, H. Tamehiro, Y. Komizo, S. Okaguchi, M. Hamada, A. Yamamoto, and I. Takeuchi, Proc. of The Thirteenth Intern. Offshore and Polar Engineering Conf., p.10, Honolulu, Hawaii, USA (2003).
  10. R. Denys, Pipeline Technology Conference, Vol. I & II, Elsevier, Amsterdam, Netherlands (2000).
  11. T. Hara, Y. Shinohara, Y. Terada, H. Asahi, and N. Doi, Proceedings of the Nineteenth International Offshore and Polar Engineering Conference, p. 73, Vancouver, Canada (2009).
  12. D. B. Lillig, Proceedings of the Eighteenth International Offshore and Polar Engineering Conference, p. 1, Vancouver, Canada (2008).
  13. T. C. Yang, C. Y. Huang, T. C. Cheng, C. Yu and R. K. Shiue, Adv. Mater. Res., 936, 1312 (2014). https://doi.org/10.4028/www.scientific.net/AMR.936.1312
  14. G. Heigl, H. Lengauer and P. Hodnik, Steel Res. Int., 79, 931 (2008). https://doi.org/10.1002/srin.200806223
  15. B. C. Kim, S. Lee, N. J. Kim and D. Y. Lee, Metall. Trans. A, 22A, 139 (1991).
  16. O Grong, Metallurgical modelling of welding, 2nd ed., p. 1, Institute of Materials, London, England (1997).
  17. G. Krauss and S. W. Thompson, ISIJ Int., 35, 937 (1995). https://doi.org/10.2355/isijinternational.35.937
  18. B. L. Bramfitt and J. G. Speer, Metall. Trans. A, 21, 817 (1990). https://doi.org/10.1007/BF02656565
  19. Offshore standard, Metallic materials, DNV-GL-OSB101, DNV-GL, Norway, p. 1 (2015)
  20. J. H. Chen, Y. Kikut, T. Araki, M. Yoned and Y. Matsuda, Acta Metall., 32, 1779 (1984). https://doi.org/10.1016/0001-6160(84)90234-7
  21. D. Deng and S. Kiyoshima, Comput. Mater. Sci., 62, 23 (2012). https://doi.org/10.1016/j.commatsci.2012.04.037
  22. H. Qiu, M.Enoki, Y. Kawaguchi and T. Kishi, ISIJ Int., 40, 34 (2000).