DOI QR코드

DOI QR Code

Solution-Processed Anti Reflective Transparent Conducting Electrode for Cu(In,Ga)Se2 Thin Film Solar Cells

CIGS 박막태양전지를 위한 반사방지특성을 가진 용액공정 투명전극

  • Park, Sewoong (Department of Materials Science and Engineering, Hanbat National University) ;
  • Park, Taejun (Department of Materials Science and Engineering, Hanbat National University) ;
  • Lee, Sangyeob (Department of Materials Science and Engineering, Hanbat National University) ;
  • Chung, Choong-Heui (Department of Materials Science and Engineering, Hanbat National University)
  • 박세웅 (한밭대학교 공과대학 신소재공학과) ;
  • 박태준 (한밭대학교 공과대학 신소재공학과) ;
  • 이상엽 (한밭대학교 공과대학 신소재공학과) ;
  • 정중희 (한밭대학교 공과대학 신소재공학과)
  • Received : 2020.02.10
  • Accepted : 2020.02.25
  • Published : 2020.03.27

Abstract

Silver nanowire (AgNW) networks have been adopted as a front electrode in Cu(In,Ga)Se2 (CIGS) thin film solar cells due to their low cost and compatibility with the solution process. When an AgNW network is applied to a CIGS thin film solar cell, reflection loss can increase because the CdS layer, with a relatively high refractive index (n ~ 2.5 at 550 nm), is exposed to air. To resolve the issue, we apply solution-processed ZnO nanorods to the AgNW network as an anti-reflective coating. To obtain high performance of the optical and electrical properties of the ZnO nanorod and AgNW network composite, we optimize the process parameters - the spin coating of AgNWs and the concentration of zinc nitrate and hexamethylene tetramine (HMT - to fabricate ZnO nanorods. We verify that 10 mM of zinc nitrate and HMT show the lowest reflectance and 10% cell efficiency increase when applied to CIGS thin film solar cells.

Keywords

References

  1. X. Wang and L. Zhi and K. Mullen, Nano Lett., 8, 323 (2008). https://doi.org/10.1021/nl072838r
  2. J. Jang, D. -Y. Park, K. -H. Hong, S. Song, K. Kim, Y. -J. Eo, J. Gwak, J. H. Yun and C. -H, Chung, Nanosci. Nanotechnol. Lett., 10, 528 (2018). https://doi.org/10.1166/nnl.2018.2671
  3. C. -H., Chung, T. -B. Song, B. Bob and Y. Yang, Nano Res., 5, 805 (2012). https://doi.org/10.1007/s12274-012-0264-8
  4. D. Azulai, T. Belenkova, H. Gilon, Z. Barkay and G. Markovich, Nano Lett., 9, 4246 (2009). https://doi.org/10.1021/nl902458j
  5. S. Pang, Y., Hernandez, X., Feng and K. Mullen, Adv. Mater., 23, 2779 (2011). https://doi.org/10.1002/adma.201100304
  6. H. Ji, J, Jang, S. Lee and C.-H. Chung, Korean J. Mater. Res., 29, 311 (2019). https://doi.org/10.3740/MRSK.2019.29.5.311
  7. S. Lee, J. Jang, K. S. Cho, T. Park, Y. M. Parkg, J. S. Park, Y. K. Kim, H. K. Lee, E. C. Jeon, D. K. Lee, B. Ahn and C. -H. Chung, ACS Appl. Mater. Interfaces, 12, 6169 (2020). https://doi.org/10.1021/acsami.9b17168
  8. C. -H. Chung, T. -B. Song, B. Bob, R. Zhu, H. -S. Duan and Y. Yang, Adv. Mater., 24, 5499 (2012). https://doi.org/10.1002/adma.201201010
  9. C. -C. Chen, L. Dou, R. Zhu, C. -H. Chung, T. -B Song, Y. B. Zheng, S. Hawks, G. Li, P. S. Weiss and Y. Yang, ACS Nano, 6, 7185 (2012). https://doi.org/10.1021/nn3029327
  10. C. -H. Chung, B. Bob, T. -B. Song and Y. Yang, Sol. Energy Mater. Sol. Cells, 120, 642 (2014). https://doi.org/10.1016/j.solmat.2013.10.013
  11. C. -H. Chung, K. -H. Hong, D. -K. Lee, J. H. Yung and Y. Yang, Chem. Mater., 27, 7244 (2015). https://doi.org/10.1021/acs.chemmater.5b03841
  12. B. Bob, A. Machness, T. -B. Song, H. Zhou, C. -H. Chung and Y. Yang, Nano Res., 9, 392 (2016). https://doi.org/10.1007/s12274-015-0920-x
  13. J. Jang, J. S. Lee, K. -H. Hong, D. -K. Lee, S. Song, K. Kim, Y. -J. Eo, J. H. Yun and C. -H. Chung, Sol. Energy Mater. Sol. Cells, 170, 60 (2017). https://doi.org/10.1016/j.solmat.2017.05.051
  14. S. Lee, J. Jang, K. S. Cho, Y. -J. Oh, K. -H, Hong, S. Song, K. Kim, Y. -J. Eo, J. H. Yun, J. Gwak and C.- H. Chung, Sol. Energ., 180, 519 (2019). https://doi.org/10.1016/j.solener.2019.01.059
  15. S. Lee, K. S. Cho, S. Song, K. Kim, Y. J. Eo, J. H. Yun, J. Gwak and C.H. Chung, J. Vis. Exp., 149, e59909 (2019).
  16. S. Lee, J. S. Lee, J. Jang, K. -H. Hong, D. -K. Lee, S. Song, K. Kim, Y. -J. Eo, J. Gwak and C. -H. Chung, Nano Energy, 53, 675 (2018). https://doi.org/10.1016/j.nanoen.2018.09.027
  17. C.-H. Chung, Phys. Rev. Appl., 12, 024060 (2019). https://doi.org/10.1103/PhysRevApplied.12.024060