DOI QR코드

DOI QR Code

Transfer-Free, Large-Scale, High-Quality Monolayer Graphene Grown Directly onto the Ti (10 nm)-buffered Substrates at Low Temperatures

Ti (10 nm)-buffered 기판들 위에 저온에서 직접 성장된 무 전사, 대 면적, 고 품질 단층 그래핀 특성

  • Han, Yire (Department of Materials Science and Engineering, Chungnam National University) ;
  • Park, Byeong-Ju (Department of Materials Science and Engineering, Chungnam National University) ;
  • Eom, Ji-Ho (Department of Materials Science and Engineering, Chungnam National University) ;
  • Yoon, Soon-Gil (Department of Materials Science and Engineering, Chungnam National University)
  • 한이레 (충남대학교 신소재공학과) ;
  • 박병주 (충남대학교 신소재공학과) ;
  • 엄지호 (충남대학교 신소재공학과) ;
  • 윤순길 (충남대학교 신소재공학과)
  • Received : 2020.02.18
  • Accepted : 2020.03.05
  • Published : 2020.03.27

Abstract

Graphene has attracted the interest of many researchers due to various its advantages such as high mobility, high transparency, and strong mechanical strength. However, large-area graphene is grown at high temperatures of about 1,000 ℃ and must be transferred to various substrates for various applications. As a result, transferred graphene shows many defects such as wrinkles/ripples and cracks that happen during the transfer process. In this study, we address transfer-free, large-scale, and high-quality monolayer graphene. Monolayer graphene was grown at low temperatures on Ti (10nm)-buffered Si (001) and PET substrates via plasma-assisted thermal chemical vapor deposition (PATCVD). The graphene area is small at low mTorr range of operating pressure, while 4 × 4 ㎠ scale graphene is grown at high working pressures from 1.5 to 1.8 Torr. Four-inch wafer scale graphene growth is achieved at growth conditions of 1.8 Torr working pressure and 150 ℃ growth temperature. The monolayer graphene that is grown directly on the Ti-buffer layer reveals a transparency of 97.4 % at a wavelength of 550 nm, a carrier mobility of about 7,000 ㎠/V×s, and a sheet resistance of 98 W/□. Transfer-free, large-scale, high-quality monolayer graphene can be applied to flexible and stretchable electronic devices.

Keywords

References

  1. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg. J. Hone, P. Kim and H. L. Stomer, Solid State Commun., 146, 351 (2008). https://doi.org/10.1016/j.ssc.2008.02.024
  2. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak and A. K. Geim, Phys. Rev. Lett., 100, 016602 (2008). https://doi.org/10.1103/PhysRevLett.100.016602
  3. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrahan, F. Miao and C. N. Lau, Nano Lett., 8, 902 (2008). https://doi.org/10.1021/nl0731872
  4. C. Lee, X. Wei, J. W. Kysar and J. Hone, Science, 321, 385 (2008). https://doi.org/10.1126/science.1157996
  5. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts and R. S. Ruoff, Adv. Mater., 22, 3906 (2010). https://doi.org/10.1002/adma.201001068
  6. S. Bae, S. J. Kim, D. Shin, J. -H. Ahn and B. H. Hong, Phys. Scr., T, 146, 014024 (2012).
  7. A. K. Geim and K. S. Novoselov, Nat. Mater., 6, 183 (2007). https://doi.org/10.1038/nmat1849
  8. M. H.-C. Jin, M. Durstock and L. Dai, Carbon Nano Technol., 4, 611 (2006).
  9. J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. V. D. Zande, J. M. Parpia, H. G. Craighead and P. L. McEuen, Nano Lett., 8, 4320 (2008). https://doi.org/10.1021/nl802156w
  10. X. Li, W. Cai, J.-H. An, S.-Y. Kim, J.-Y. Nah, D.-X. Yang, R. Piner, A. Velamakanni, I.-H. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, Science, 324, 1312 (2009). https://doi.org/10.1126/science.1171245
  11. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, Nano Lett., 9, 30 (2009). https://doi.org/10.1021/nl801827v
  12. X. Li, C. W. Magnuson, A. Venugopal, R. M. Tromp, J. B. Hannon, E. M. Vogel, L. Colombo and R. S. Ruoff, J. Am. Chem. Soc., 133, 2861 (2011).
  13. J. An, E. Voelkl, J. W. Suk, X. Li, C. W. Magnuson, L. Fu, P. Tiemeijer, M. Bischoff, B. Freitag, E. Popova and R. S. Ruoff, ACS Nano, 5, 2433 (2011). https://doi.org/10.1021/nn103102a
  14. J-H. Lee, E. K. Lee, W.-J. Joo, Y. Jang, B.-S. Kim, J. Y. Lim, S.-H. Choi, S. J. Ahn, J. R. Ahn, M.-H. Park, C.-W. Yang, B. L. Choi, S.-W. Hwang and D. Whang, Science, 344, 286 (2014). https://doi.org/10.1126/science.1252268
  15. B.-J. Park, J.-S. Choi, J.-H. Eom, H. Ha, H. Y. Kim, S. Lee, H. Shin and S.-G. Yoon, ACS Nano, 12, 2008 (2018). https://doi.org/10.1021/acsnano.8b00015
  16. Y. Lee, S. Bae, H. Jang, S.-J. Jang, S.-E. Zhu, S.-H. Sim, Y.-I. Song, B.-H. Hong and J.-H. Ahn, Nano Lett., 10, 490 (2010). https://doi.org/10.1021/nl903272n