DOI QR코드

DOI QR Code

Crystal Structure and Microstructure Variation of Nonstoichiometric Bi1±xFeO3±δ and Ti-doped BiFeO3 Ceramics under Various Sintering Conditions

비화학양론적 Bi1±xFeO3±δ와 Ti가 첨가된 BiFeO3의 소결조건에 따른 결정구조와 미세구조 변화

  • Bae, Jihee (School of Materials Science and Engineering, Changwon National University) ;
  • Kim, Jun Chan (School of Materials Science and Engineering, Changwon National University) ;
  • Kim, Myong-Ho (School of Materials Science and Engineering, Changwon National University) ;
  • Lee, Soonil (School of Materials Science and Engineering, Changwon National University)
  • 배지희 (창원대학교 신소재공학부) ;
  • 김준찬 (창원대학교 신소재공학부) ;
  • 김명호 (창원대학교 신소재공학부) ;
  • 이순일 (창원대학교 신소재공학부)
  • Received : 2020.01.01
  • Accepted : 2020.01.14
  • Published : 2020.02.27

Abstract

BiFeO3 with perovskite structure is a well-known material that has both ferroelectric and antiferromagnetic properties called multiferroics. However, leaky electrical properties and difficulty of controlling stoichiometry due to Bi volatility and difficulty of obtaining high relative density due to high dependency on the ceramic process are issues for BiFeO3 applications. In this work we investigated the sintering behavior of samples with different stoichiometries and sintering conditions. To understand the optimum sintering conditions, nonstoichiometric Bi1±xFeO3±δ ceramics and Ti-doped Bi1.03Fe1-4x/3TixO3 ceramics were synthesized by a conventional solid-state route. Dense single phase BiFeO3 ceramics were successfully fabricated using a two-step sintering and quenching process. The effects of Bi volatility on microstructure were determined by Bi-excess and Ti doping. Bi-excess increased grain size, and Ti doping increased sintering temperature and decreased grain size. It should be noted that Ti-doping suppressed Bi volatility and stabilized the BiFeO3 phase.

Keywords

References

  1. J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin and K. M. Rabe, Phys. Rev. B, 71, 014113 (2005). https://doi.org/10.1103/physrevb.71.014113
  2. G. Catalan and J. F. Scott, Adv. Mater., 21, 2463 (2009). https://doi.org/10.1002/adma.200802849
  3. L. W. Martin, S. P. Crane, Y. H. Chu, M. B. Holcomb, M. Gajek, M. Huijben, C. H. Yang, N. Balke and R. Ramesh, J. Phys.: Condens. Matter., 20, 434220 (2008). https://doi.org/10.1088/0953-8984/20/43/434220
  4. Y. Lee, Z. Q. Liu, J. T. Heron, J. D. Clarkson, J. Hong, C. Ko, M. D. Biegalski, U. Aschauer, S. L. Hsu, M. E. Nowakowski and J. Wu, Nat. Commun., 6, 5959 (2015). https://doi.org/10.1038/ncomms6959
  5. J. T. Heron, J. L. Bosse, Q. He, Y. Gao, M. Yrassin, L. Ye, J. D. Clarkson, C. Wang, J. Liu, S. Salahuddin and D. C. Ralph, Nature, 516, 370 (2014). https://doi.org/10.1038/nature14004
  6. C. W. Nan, M. I. Bichurin, S. Dong, D. Viehland and G. Srinivasan, J. Appl. Phys., 103, 1 (2008). https://doi.org/10.1152/japplphysiol.00010.2007
  7. M. Fiebig, T. Lottermoser, D. Frohlich, A. V. Goltsev and R. V. Pisarev, Nature, 419, 818 (2002). https://doi.org/10.1038/nature01077
  8. S. M. Selbach, T. Tybell, M. A. Einarsrud and T. Grande, Adv. Mater., 20, 3692 (2008). https://doi.org/10.1002/adma.200800218
  9. S. M. Selbach, T. Tybell, M. A. Einarsrud and T. Grande, J. Solid State Chem., 183, 1205 (2010). https://doi.org/10.1016/j.jssc.2010.03.014
  10. G. Catalan, and J. F. Scott, Adv. Mater., 21, 2463 (2009). https://doi.org/10.1002/adma.200802849
  11. T. Zheng and J. Wu, J. Mater. Chem. C, 3, 11326 (2015). https://doi.org/10.1039/C5TC02203G
  12. Y. Sun, W. Cai, R. Gao, X. Cao, F. Wang, T. Lei, X. Deng, G. Chen, H. He and C. Fu, J. Mater. Sci.: Mater. Electron., 28, 12039 (2017). https://doi.org/10.1007/s10854-017-7015-2
  13. J. W. Woo, S. B. Baek, T. K. Song, M. H. Lee, J. U. Rahman, W. J. Kim, Y. S. Sung and S. Lee, J. Korean Ceram. Soc., 54, 323 (2017). https://doi.org/10.4191/kcers.2017.54.4.04
  14. S. M. Selbach, M. A. Einarsrud and T. Grande, Chem. Mater., 21, 169 (2008). https://doi.org/10.1021/cm802607p
  15. D. Wang, G. Wang, S. Murakami, Z. Fan, A. Feteira, D. Zhou, S. Sun, Q. Zhao and I. M. Reaney, J. Adv. Dielectr., 8, 1830004 (2018). https://doi.org/10.1142/s2010135x18300049
  16. R. D. Shannon, Acta Cryst., A32, 751 (1976). https://doi.org/10.1107/S0567739476001551
  17. R. Das and K. Mandal, J. Magn. Magn. Mater., 324, 1913 (2012). https://doi.org/10.1016/j.jmmm.2012.01.022
  18. Y.-I. Jung, S.-Y. Choi, S.-J. L. Kang, Acta Mater., 54, 2849 (2006). https://doi.org/10.1016/j.actamat.2006.02.025