DOI QR코드

DOI QR Code

Synthesis and Characterization of Soft Magnetic Composite Powders in Fe2O3-Zn System by Mechanical Alloying

기계적 합금화법에 의한 Fe2O3-Zn계 연자성 복합분말의 제조 및 특성평가

  • Lee, Chung-Hyo (Department of Advanced Materials Science and Engineering, Mokpo National University)
  • 이충효 (목포대학교 신소재공학과)
  • Received : 2019.12.19
  • Accepted : 2020.01.25
  • Published : 2020.02.27

Abstract

Synthesis of composite powders for the Fe2O3-Zn system by mechanical alloying (MA) has been investigated at room temperature. Optimal milling and heat treatment conditions to obtain soft magnetic composite with fine microstructure were investigated by X-ray diffraction, differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM) measurement. It is found that α-Fe/ZnO composite powders in which ZnO is dispersed in α-Fe matrix can be obtained by MA of Fe2O3 with Zn for 4 hours. The change in magnetization and coercivity also reflects the details of the solid-state reduction process of hematite by pure metal of Zn during MA. Densification of the MA powders was performed in a spark plasma sintering (SPS) machine at 900 ~ 1,000 ℃ under 60 MPa. Shrinkage change after SPS of sample MA'ed for 5 hrs was significant above 300 ℃ and gradually increased with increasing temperature up to 800 ℃. X-ray diffraction results show that the average grain size of α-Fe in the α-Fe/ZnO composite sintered at 900 ℃ is in the range of 110 nm.

Keywords

References

  1. C. C. Koch, O. B. Cavin, C. G. Mckamey and J. O. Scarbrough, Appl. Phys. Lett., 43, 1017 (1983). https://doi.org/10.1063/1.94213
  2. R. B. Schwarz and C. C. Koch, Appl. Phys. Lett., 49, 146 (1986). https://doi.org/10.1063/1.97206
  3. J. Eckert and L. Schultz, J. Less Common Met., 166, 293 (1990). https://doi.org/10.1016/0022-5088(90)90011-8
  4. R. B. Schwarz and W. L. Johnson, Phys. Rev. Lett., 51, 415 (1983). https://doi.org/10.1103/PhysRevLett.51.415
  5. Y. Ogino, S. Murayama and T. Yamasaki, J. Less Common Met., 168, 221 (1991). https://doi.org/10.1016/0022-5088(91)90304-M
  6. C. H. Lee, J. Ceram. Process. Res., 9, 321 (2008). https://doi.org/10.36410/JCPR.2008.9.3.321
  7. L. F. Mattheiss, Phys. Rev. B: Condens. Matter Mater. Phys., 45, 3252 (1992). https://doi.org/10.1103/physrevb.45.3252
  8. T. Fukunaga, N. Kuroda, C. H. Lee, T. Koyano and U. Mizutani, J. Non-Cryst. Solids, 176, 98 (1994). https://doi.org/10.1016/0022-3093(94)90217-8
  9. H. J. Fecht, E. Hellstern, Z. Fu and W. L. Johnson, Metall. Mater. Trans. A, 21, 2333 (1990). https://doi.org/10.1007/BF02646980
  10. K. Tokumitsu, Mat. Sci. Forum, 88-90 715 (1992). https://doi.org/10.4028/www.scientific.net/MSF.88-90.715
  11. H. Izumi, K. Izumi and K. Kudaka, J. Jpn. Soc. Powder Powder Metall., 48, 1051 (2001). https://doi.org/10.2497/jjspm.48.1051
  12. O. Kubaschewski and C. B. Alcock, Metallurgical Thermochemistry, 5th ed., p.268, Pergamon Press, New York (1983).
  13. W. H. Hall, J. Inst. Met., 75, 1127 (1948).
  14. U. Mizutani and C. H. Lee, Mater. Trans. JIM, 36, 210 (1995). https://doi.org/10.2320/matertrans1989.36.210
  15. K. Schnitzke, L. Schultz, J. Wecker and M. Katter, Appl. Phys. Lett., 57, 2853 (1990). https://doi.org/10.1063/1.104202
  16. G. Herzer, IEEE. Trans. Magn., 25, 3327 (1989). https://doi.org/10.1109/20.42292
  17. L. Schultz and J. Wecker, Mater. Sci. Eng., 99, 127 (1988). https://doi.org/10.1016/0025-5416(88)90307-2