DOI QR코드

DOI QR Code

Characteristics of Perovskite Solar Cell with Nano-Structured MoO3 Hole Transfer Layer Prepared by Hydrothermal Synthesis

수열합성법으로 제막한 MoO3 나노 구조체를 정공수송층으로 갖는 페로브스카이트 태양전지 특성분석

  • Song, Jae-Kwan (Department of Advanced Chemicals & Engineering, Chonnam National University) ;
  • Ahn, Joon-Sub (Department of Advanced Chemicals & Engineering, Chonnam National University) ;
  • Han, Eun-Mi (School of Chemical Engineering, Chonnam National University)
  • 송재관 (전남대학교 공과대학 신화학소재공학과) ;
  • 안준섭 (전남대학교 공과대학 신화학소재공학과) ;
  • 한은미 (전남대학교 공과대학 화학공학부)
  • Received : 2020.01.01
  • Accepted : 2020.01.29
  • Published : 2020.02.27

Abstract

MoO3 metal oxide nanostructure was formed by hydrothermal synthesis, and a perovskite solar cell with an MoO3 hole transfer layer was fabricated and evaluated. The characteristics of the MoO3 thin film were analyzed according to the change of hydrothermal synthesis temperature in the range of 100 ℃ to 200 ℃ and mass ratio of AMT : nitric acid of 1 : 3 ~ 15 wt%. The influence on the photoelectric conversion efficiency of the solar cell was evaluated. Nanorod-shaped MoO3 thin films were formed in the temperature range of 150 ℃ to 200 ℃, and the chemical bonding and crystal structure of the thin films were analyzed. As the amount of nitric acid added increased, the thickness of the thin film decreased. As the thickness of the hole transfer layer decreased, the photoelectric conversion efficiency of the perovskite solar cell improved. The maximum photoelectric conversion efficiency of the perovskite solar cell having an MoO3 thin film was 4.69 % when the conditions of hydrothermal synthesis were 150 ℃ and mass ratio of AMT : nitric acid of 1 : 12 wt%.

Keywords

References

  1. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, J. Am. Chem. Soc., 131, 6050 (2009). https://doi.org/10.1021/ja809598r
  2. E. H. Jung, N. J. Jeon, E. Y. Park, C. S. Moon, T. J. Shin, T. Y. Yang, J. H. Noh and J. W. Seo, Nature, 567, 511 (2019). https://doi.org/10.1038/s41586-019-1036-3
  3. N. D. Pham, V. T. Tiong, P. Chen, L. Wang, G. J. Wilson, J. Bell and H. Wang, J. Mater. Chem. A, 5, 5195 (2017). https://doi.org/10.1039/C6TA11139D
  4. Y. Shao, Z. Xiao, C. Bi, Y. Yuan and J. Huang, Nat. Commun., 5, 5784 (2014). https://doi.org/10.1038/ncomms6784
  5. W. Chen, Y. Wu1, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Gratzel and L. Ha, Science, 350, 944 (2015). https://doi.org/10.1126/science.aad1015
  6. J. H. Kim, P. Liang, S. T. Williams, N. Cho, C. Chueh, M. S. Glaz, D. S. Ginger and A. K.-Y. Jen, Adv. Mater., 27, 695 (2015). https://doi.org/10.1002/adma.201404189
  7. T. Oku, R. Motoyoshi, K. Fujimoto, T. Akiyama, B. Jeyadevan and J. Cuya, J. Phys. Chem. Solids, 72, 1206 (2011). https://doi.org/10.1016/j.jpcs.2011.06.014
  8. S. Chatterjee and A. J. Pal, J. Phys. Chem. C, 120, 1428 (2016). https://doi.org/10.1021/acs.jpcc.5b11540
  9. K. Zilberberg, S. Trost, J. Meyer, A. Kahn, A. Behrendt, D. Lutzenkirchen-Hecht, R. Frahm and T. Riedl, J. Mater. Chem. C, 21, 4776 (2011).
  10. L. Mai, F. Yang, Y. Zhao, X. Xu, L. Xu, B. Hu, Y. Luo and H. Liu, Mater. Today, 14, 346 (2011). https://doi.org/10.1016/S1369-7021(11)70165-1
  11. S. Y. Lin, C. M. Wang, K. S. Kao, Y. C. Chen and C. C. Liu, J. Sol-Gel Sci. Technol., 53, 51 (2010). https://doi.org/10.1007/s10971-009-2055-6
  12. M. Dhanasankar, K. K. Purushothaman and G. Muralidharan, Appl. Surf. Sci., 257, 2074 (2011). https://doi.org/10.1016/j.apsusc.2010.09.052
  13. A. Khademi, R. Azimirad, A. A. Zavarian and A. Z. Moshfegh, J. Phys. Chem. C, 113, 19298 (2009). https://doi.org/10.1021/jp9056237
  14. H. Farsi, F. Gobal, H, Raissi and S. Moghiminia, J. Solid State Electrochem, 14, 643 (2010). https://doi.org/10.1007/s10008-009-0830-5
  15. A. D. Sayede, T. Amriou, M. Pernisek, B. Khelifa and C. Mathieu, Chem. Phys., 316, 72 (2005). https://doi.org/10.1016/j.chemphys.2005.04.036
  16. D. Y. Kim, J. Subbiah, G. Sarasqueta, F. So, H. Ding, Irfan and Y. Gao, Appl. Phys. Lett., 95, 093304 (2009). https://doi.org/10.1063/1.3220064
  17. T. Ivanova, K. A. Gesheva, G. Popkirov, M. Ganchev and E. Tzvetkova, Mater. Sci. Eng., B, 119, 232 (2005). https://doi.org/10.1016/j.mseb.2004.12.084
  18. R. S. Patil, M. D. Uplane and P. S. Patil, Appl. Surf. Sci., 252, 8050 (2006). https://doi.org/10.1016/j.apsusc.2005.10.016
  19. N. Miyata, T. Suzuki and R. Ohyama, Thin Solid Films, 281-282, 218 (1996). https://doi.org/10.1016/0040-6090(96)08617-8
  20. L. Kullman, A. Azens and C. G. Granqvist, Sol. Energy Mater. Sol. Cells, 61, 189 (2000). https://doi.org/10.1016/S0927-0248(99)00109-9
  21. P. S. Patil, R. K. Kawar, S. B. Sadale, A. I. Inamdar and S. S. Mahajan, Sol. Energy Mater. Sol. Cells, 90, 1629 (2006). https://doi.org/10.1016/j.solmat.2005.09.004
  22. N. Maheswari and G. Muralidharan, Appl. Surf. Sci., 416, 461 (2017). https://doi.org/10.1016/j.apsusc.2017.04.094
  23. Y. Wang, F. Jin, M. Sasaki, Wahyudiono, F. Wang, Z, Jing and M. Goto, AIChE J., 59, 6 (2013).
  24. J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bombem, Handbook of X-ray Photoelectron Spectroscopy, p. 112, Eds. J. Chastain, PerkinElmer Corporation, Minnesota, USA (1992).
  25. C. Julien, A. Khelfa, O. M. Hussain and G. A. Nazri, J. Cryst. Growth, 156, 235 (1995). https://doi.org/10.1016/0022-0248(95)00269-3